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Abstract 

Words with larger morphological families elicit shorter response times (RTs) in lexical 

decision experiments (e.g., Bertram et al. 2000). One possible account for this family size 

(FS) effect draws on the Discriminative Lexicon Model (DLM; Chuang & Baayen 2021), 

positing that morphological family members strengthen relationships between forms and 

meanings. While it has been shown that the DLM successfully explains FS effects in reading 

(Mulder et al. 2014), we investigated whether it does so in listening too. We trained the 

computational model LDL-AURIS (Shafaei-Bajestan et al. 2023), which implements the 

DLM, on Dutch and show that a measure derived from LDL-AURIS accounts for variance in 

auditory lexical decision RTs in Dutch, and also partially accounts for the same variance in 

the RTs as the auditory FS effect. Future research should investigate whether some other 

measure derived from the DLM can fully explain FS effects in listening. 

Keywords: family size, discriminative lexicon model, auditory word recognition, 

morphological processing, lexical decision. 
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1. Introduction 

 

A word’s family size is the count of all word types in which the given word’s root occurs as a 

constituent. For instance, family members of the word think are, among others, doublethink, 

thinks, rethinking, and unthought. In both visual and auditory lexical decision experiments, 

words with larger morphological families elicit quicker responses (e.g., Moscoso del Prado 

Martín et al. 2004; Müller et al. 2024). One explanatory account for this family size effect 

stems from the theory of the Discriminative Lexicon Model (DLM; Chuang & Baayen 2021). 

A computational implementation of the DLM successfully simulated the family size effect in 

the reading of English nouns (Mulder et al. 2014). It is not self-evident that the DLM can 

explain the family size effect in listening as well because the processes underlying written 

and spoken word recognition systematically differ. The present study investigates to what 

extent the DLM explains the auditory family size effect. 

 

 

2. The family size effect 

 

The family size effect has been observed in multiple studies and for multiple languages (e.g., 

Bertram et al. 2000; Mulder et al. 2014) in both reading and listening. It has been suggested 

that the family size effect is especially driven by semantic similarities between family 

members (e.g., Moscoso del Prado Martín et al. 2004). Moreover, family members contribute 

more to the effect the greater their similarity in form with the word to be recognised (Müller 

et al. 2024).  

There are fundamental differences between how the family size effect manifests itself 

in visual and in auditory word recognition. In visual word recognition, the morphological 

structure of the word to be recognised does not affect the family size effect: the effect has 

been documented for prefixed (e.g., Moscoso del Prado Martín et al. 2004), simplex (e.g., 

Mulder et al. 2013), and suffixed words (e.g., Bertram et al. 2000). In contrast, in auditory 

word recognition, the family size effect is elicited only by simplex and suffixed words, but 

not by prefixed words, suggesting that the morphological structure of the word to be 

recognised interacts with the effect (Müller et al. 2024). 

Differences between the visual and the auditory family size effect can be explained in 

light of systematic differences between reading and listening. During reading, a word’s 

characters can all be simultaneously processed due to parafoveal preview (e.g., Rayner 1998). 
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This simultaneity renders it irrelevant whether the word's root, which is the shared element 

among the family members, occurs as first, second, or third constituent. In contrast, in 

auditory word recognition, words unfold over time and the word recognition process is 

assumed to start as soon as the audio input becomes available. Human auditory word 

recognition considers all words stored in memory that are (to some extent) compatible with 

the audio presented so far and gradually winnows out words that become more incompatible 

when the audio unfolds (e.g., Marslen-Wilson & Welsh 1978). Because of the incremental 

unfolding of the audio signal, prefixes are first perceived and processed, then roots, then 

suffixes. This may explain why the family size effect is less strong for prefixed words: the 

recognition process for prefixed words is already well under its way before the root, linking 

the members of a morphological family, becomes discernible.  

 

 

3. Discriminative Lexicon Theory 

 

Mulder and colleagues (2014) propose that the family size effect can be understood in terms 

of discriminative learning in the DLM. Discriminative learning supposes that the association 

between parts of a word’s form and the word’s meaning is strengthened when both occur 

together and weakened when one of them is present while the other is absent. The latter may 

occur, for instance, when a morpheme has several meanings or when a sound sequence (e.g., 

/rɛd/) is part of words with different meanings (e.g., red, bread). A stronger association leads 

to faster recognition when the word is presented. In the DLM, the family size effect is 

explained by the principle that the more family members a word has, the stronger the 

association between the word’s root and its meaning. 

The DLM is usually implemented as a two-layer neural network that takes as its input 

words’ feature representations and predicts words' meaning representations. Feature 

representations can take the form of letter sequences or acoustic features, while meanings can 

be represented by arbitrary identifiers or semantic vectors (see below). For making 

predictions, the network first has to be trained, that is, it has to establish the association 

weights between word feature representations and meaning representations, on the basis of 
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the input features and meanings of numerous words. When associations weights have been 

established, the DLM can determine a given input word’s meaning by comparing the support 

of the word’s features for all word meanings in the lexicon, modulated by the association 

strengths. Vice versa, the DLM can produce a word’s form, given a word’s meaning. 

Previous studies have shown that measures derived from the DLM can predict behavioural 

data including visual lexical decision data and acoustic durations (for an overview, see 

Chuang & Baayen 2021). 

Mulder and colleagues (2014) implemented an early version of the DLM as a 

computational model for word reading, called the Naïve Discriminative Reader. The Naïve 

Discriminative Reader takes as its input character trigrams. Mulder and colleagues used the 

support for the meanings of the words in the lexicon to simulate lexical decision data. Family 

size was a significant predictor for the observed and the simulated lexical decision data, 

suggesting that the DLM can explain family size effects. 

There is only one implementation of the DLM for spoken word recognition: LDL-

AURIS (Shafaei-Bajestan et al. 2023). This implementation takes as its input words' audio 

recordings, of which the frequency spectra are summarised by means of Continuous 

Frequency Band Summary Features (C-FBSFs). Whereas the Naïve Discriminative Reader 

represents the meaning of a word with a unique letter sequence (localist representation), 

LDL-AURIS represents meanings with semantic vectors produced by a distributional 

semantics model. These vectors reflect that words with similar meanings tend to co-occur 

with the same set of words.  

Shafaei-Bajestan and colleagues (2023) tested LDL-AURIS by determining how well 

it can recognise words sliced from continuous speech. This is a difficult task for human 

listeners, because, in everyday speech, words tend to be coarticulated and reduced, which 

makes them difficult to identify when presented without their contexts. Accordingly, human 

participants only identified 20.8% to 44.0% of the words sliced out of their contexts (Arnold 

et al. 2017). To determine whether LDL-AURIS correctly recognised a presented word, 

Shafaei-Bajestan and colleagues (2023) computed the correlation between the semantic 

vector computed for this word and all vectors in the lexicon. If the vector of the correct 

meaning was closest to the computed vector, the presented word was assumed to be correctly 

recognised. LDL-AURIS recognised 16% of the words, which approximated the lower bound 

of human performances in this difficult task. It has yet to be investigated whether LDL-
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AURIS can also predict the time listeners need to recognise a word, for instance, the reaction 

times (RTs) from lexical decision experiments. 

 

 

4. The present study 

 

The present study focused on two research questions. First, we investigated whether LDL-

AURIS can account for how quickly listeners recognise spoken words. More specifically, we 

investigated whether LDL-AURIS predicts RTs from an auditory lexical decision 

experiment. Second, we investigated whether and to what extent LDL-AURIS accounts for 

the same variance in the auditory lexical decision RTs as family size does.  

Previous research has used different definitions of family size, resulting in different 

family size measures. In the present study, we focused on three of them. The first measure is 

Classical Family Size, for which all words including the presented word’s root (i.e. family 

members) equally weigh. Like all family size measures, Classical Family Size yields a 

facilitative effect in lexical decision experiments (e.g., Bertram et al. 2000). The second 

measure is Semantic Family Size, for which the weight of a family member depends on the 

strength of its semantic relation with the presented word. Semantic Family Size yields better 

predictions for RTs than Classical Family Size (e.g., Moscoso del Prado Martín et al. 2004). 

Following Müller and colleagues (2024), the third measure is Semantic Form Overlap Family 

Size, for which the weight of a family member depends on both the strength of its semantic 

relation with the presented word and its form overlap with the presented word. Semantic 

Form Overlap Family Size is the best predictor of all family size measures for visual and 

auditory lexical decision RTs (Müller et al. 2024). For a detailed description of how we 

computed these family size measures, see Subsection 5.3. 

We tested LDL-AURIS against the RTs from the Biggest Auditory Lexical Decision 

Experiment Yet (BALDEY; Ernestus & Cutler 2015), a Dutch large-scale auditory lexical 

decision experiment. We chose Dutch because Müller and colleagues (2024) showed that the 

three above-mentioned family size measures are statistically significant predictors of lexical 
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decision RTs in Dutch. 

In order to investigate our research questions, we compared three types of models, as 

summarised in Table 1. First, we built a statistical baseline model to predict the RTs from 

BALDEY that includes the most important control variables known to predict auditory 

lexical decision RTs (see Subsection 5.4), in order to decrease the variance in the RTs. We 

compared this baseline model with a model that also contained a predictor derived from 

LDL-AURIS (in interaction with the word’s morphological structure). If the latter model is 

better, LDL-AURIS contributes to explaining the RTs.  

Second, we produced three new statistical models by extending the baseline model 

with both the LDL-AURIS measure and a family size measure (both in interaction with 

morphological structure). We investigated whether any of these three new models better fit 

the RTs than an extension of the baseline model with just the LDL-AURIS measure. If so, the 

LDL-AURIS measure does not fully explain family size effects.  

Third, we investigated whether the LDL-AURIS measure accounts for at least part of 

the family size effect. To this end, we investigated how much any of the three family size 

measures (in interaction with morphological structure) improves the model fit when added to 

the baseline model and compared this to how much any of the three family size measures 

improves the model fit when added to a model also containing the LDL-AURIS measure (in 

interaction with morphological structure). If the presence of the LDL-AURIS predictor 

results in a smaller improvement in terms of model fit, the LDL-AURIS measure accounts for 

at least part of the family size effect.  

 

Table 1. Overview of model comparisons and the conclusions that can be drawn based on the 

results. SemDens refers to Semantic Density, the LDL-AURIS measure that we tested. Family 

Size represents any of the three tested family size measures. 

Model 1 Model 2 Interpretation of potential results 

Baseline Baseline + SemDens If Model 2 is better than Model 1, the LDL 

AURIS measure accounts for RTs. 
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Baseline + 

SemDens 

Baseline +  

SemDens + Family Size 

If Model 2 is better than Model 1, the LDL-

AURIS measure does not (fully) account for 

family size effects. 

   

Baseline (1a) 

vs. 

Baseline +  
Family Size (1b) 

Baseline + SemDens (2a) 

vs.  

Baseline + SemDens + 

Family Size (2b) 

If the difference in the model’s goodness of 

fit with the RTs between Models 1a and 1b 

is larger than between Models 2a and 2b, the 

LDL-AURIS measure accounts at least to 

some extent for the family size effects. 

 

Because LDL-AURIS has not yet been used to predict lexical decision RTs, we based 

the choice of our predictors on previous studies using the DLM to predict visual lexical 

decision RTs. Previous studies identified two predictors. The first predictor is Target 

Correlation, which is defined as the correlation between the semantic vector produced by 

LDL-AURIS on the basis of the audio input and the semantic vector of the correct word in 

the lexicon (Heitmeier et al. 2023a). Because this predictor did not predict RTs with 

statistical significance for our BALDEY dataset, we refrain from further discussing this 

predictor. 

The second predictor is Semantic Density, which is the average cosine similarity 

between the semantic vector produced by LDL-AURIS based on the audio signal and each of 

the ten closest semantic vectors in the lexicon, in terms of cosine similarity. Heitmeier and 

colleagues (2023b) report that higher Semantic Densities correlate with shorter RTs. Their 

explanation for this finding is that when the semantic vector produced by the model lands in 

areas of more words, the presented word has a higher wordlikeness, which facilitates a “yes” 

response in lexical decision experiments. 

 

 

5. Experiment 

 

 

The data and the scripts that were used for this study can be downloaded from: 

https://doi.org/10.34973/x6v3-yj45.  

 

https://doi.org/10.34973/x6v3-yj45
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5.1 Data 

 

We predicted the RTs from BALDEY, which contains response latencies from 20 native 

speakers of Dutch to 2,780 spoken Dutch content words and 2,761 pseudowords. We only 

analysed correct responses to all real words, except for compounds, that were also part of the 

training set of LDL-AURIS (see Subsection 5.3). The dataset thus comprised 15,936 

responses with 5,908 responses to 322 unique simplex words, 227 responses to 12 unique 

prefixed words, 8,875 responses to 478 unique suffixed words, and 926 responses to 50 

unique words containing both a prefix and a suffix. We excluded 24 (0.15%) responses from 

Participant 1 in Session 8 due to an encoding error and the 248 responses (1.56%) given 

before stimulus offset. 

 

5.2 Training LDL-AURIS 

 

We trained LDL-AURIS on the audio recordings of Component o of the Spoken Dutch 

Corpus (Oostdijk 2000), which contains read-aloud speech from Dutch native speakers. We 

chose read-aloud speech because it is usually clearly pronounced, like the stimuli in 

BALDEY. Word tokens were sliced out from their acoustic context based on word 

segmentations as provided in the corpus. We removed mispronounced, incomplete, and 

unintelligible word tokens. The resulting dataset contains 550,688 word tokens (39,278 word 

types).  

LDL-AURIS’ input matrix specifies for each word token its acoustic properties in the 

form of C-FBSFs. The output matrix specifies for each word token its gold standard semantic 

vector, which is the semantic vector derived from a distributional semantics model. We used 

a Dutch distributional semantics model (Nieuwenhuijse 2018) that was trained on more than 

600 million messages on Dutch social media, news, blogs, and forums, with word2vec 

(Mikolov et al. 2013). We removed 36,002 word tokens (14,646 word types) from the 

training data of LDL-AURIS, because the distributional semantics model did not provide 

semantic vectors for these words. 

We trained LDL-AURIS in julia (Bezanson et al. 2017) with the package JudiLing 

(Luo et al. 2020). All parameters were exactly set as by Shafaei-Bajestan and colleagues 

(2023), who provide more details about the training procedure of LDL-AURIS. 
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5.3 Calculation of the family size measures 

 

We determined all family size measures exactly as Müller and colleagues (2024). We based 

the family size measures on words incorporated in CELEX (Baayen and colleagues 1996).1 

Classical Family Size has a mean of 7.07 (SD = 0.36), Semantic Family Size has a mean of 

7.19 (SD = 0.28), and Semantic Form Overlap Family Size’s mean is 5.28 (SD = 0.98). For 

the statistical analyses, which were conducted with these measures, the measures were first 

log-transformed and then normalised with a z-transformation. After this preprocessing, 

Classical Family Size strongly correlates with Semantic Family Size (r = .998) and with 

Semantic Form Overlap Family Size (r = .804); Semantic Family Size and Semantic Form 

Overlap Family Size also strongly correlate (r = .810). 

 

5.4 Control variables in the baseline model 

 

Our baseline model included four control variables. The first is Morphological Structure 

(MorphStr) with the levels “prefixed”, “simplex”, “suffixed”, and “double-affixed”, because 

the auditory family size effect has been shown to vary with the morphological structure of the 

presented word (Müller et al. 2024). Second, the Moving Average Response Time (maRT) 

models the weighted average response time over preceding trials (ten Bosch et al. 2018). 

Third, to capture a participant’s adjustment to the task throughout the entire experiment, we 

incorporated the number of each Trial (e.g., Ernestus & Cutler 2015). Fourth, we factored in 

form Frequency, which we obtained from CELEX (Freq; Baayen et al. 1996). All control 

variables were first log-transformed and then z-transformed for scaling and centring.  

 
1 Because LDL-AURIS was trained on fewer word types than are available in CELEX, we tested whether the 

results of this study change when the family size measures are only based on those that also occur in the LDL-

AURIS training data. These alternative family size measures correlate with the family size measures reported in 

this paper with coefficients between .90 and .93 for any family size measure. More importantly, these 

alternative measures yield results very similar to those reported in this study. We chose to present the results 

from the family size measures based on the complete CELEX database in this study because we believe that 

they better reflect a listener’s knowledge of words, which is not only based on listening but also on reading. 
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The correlation coefficients between each pair of control variable and between each 

control variable and Semantic Density or a family size measure is smaller than .1, except that 

Frequency weakly correlates with the three family size measures (rmin = .34, rmax = .38). These 

correlations are considered too low to be problematic.  

 

5.5 Estimation and comparison of the models 

 

We implemented all statistical models as Generalised Additive Mixed Models, with R 4.0.5 

(R Core Team 2017) and the package mgcv (Wood 2015). We preferred this type of model 

over Linear Mixed-Effects Models (e.g., Bates et al. 2015), because the former can easily 

detect both linear and non-linear effects, whereas the latter can only detect linear effects. A 

practical introduction to Generalised Additive Mixed Models is provided by, for instance, 

Chuang and colleagues (2021). 

We fitted all models in the style of Bates and colleagues (2015). That is, for the 

baseline model, the initial model comprised as predictors a) a parametric term for the 

categorical variable Morphological Structure, b) thin plate regression splines for all 

continuous control variables, c) a by-participant intercept, and d) by-participant random 

slopes for all continuous variables. We subsequently simplified this model by step-wise 

elimination of predictors that did not reach statistical significance. Then, we assessed whether 

pairs of predictors exhibited a concurvity exceeding 0.7, suggesting that half of the explained 

variance attributed to a given predictor is actually accounted for by other predictors. For pairs 

that surpassed the threshold of 0.7, we tested whether eliminating one of the two predictors 

impacted the other predictor’s significance level (measured by the p-value) or shape (as 

depicted in an effects plot). If so, we eliminated the predictor with the smaller p-value. This 

procedure ensures that the model can accurately estimate all included predictors’ effects 

(Tomaschek et al. 2018). 

As summarised in Table 1, we compared the baseline model and models extended 

with Semantic Density or a family size measure. Following standard procedures (e.g., 

Chuang et al. 2021), we did so using a χ2-test on likelihood scores for nested model 
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comparisons. For comparing the difference in model improvement between two pairs of 

models, we compared decrease in AIC. 

 

5.6 Results 

 

Because the baseline model is not of interest by itself, we will not discuss it here. We just 

note that the control variables show approximately the same types of effects in the baseline 

model as in the best model developed in this study, which is summarised in Appendix A. 

Adding Semantic Density in interaction with Morphological Structure as predictor to 

the baseline model results in a significantly better fit to the data (χ2
(2) = 366.446, p < .001). 

Semantic Density is a significant predictor of the RTs of simplex (F = 66.237, p < .001), 

suffixed (F = 303.520, p < .001), and prefixed words (F = 4.891, p = .016), but not of double-

affixed words (F = 0.591, p = .442). This shows that a predictor derived from the DLM as 

implemented in LDL-AURIS can explain variance in auditory lexical decision RTs of words 

that are made of at most two morphemes. As illustrated in Figure 1, the effect of Semantic 

Density is inhibitory, that is, stimuli with a greater Semantic Density are responded to more 

slowly. The effect seems to level-off for values of Semantic Density greater than 0.6.2 

 

Figure 1. Partial effect of Semantic Density (x-axis) on log-transformed RTs (y-axis) for 

words with different morphological structures (panels). The density plots below the x-axes 

 
2 Based on a question from a reviewer, we tested whether including an interaction between semantic density 

and word frequency would lead to a significantly better model, which is not the case. 
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indicate the number of responses to words with the corresponding Semantic Density.  

 

The further addition of an interaction between any of the three family size predictors 

by Morphological Structure to the model with Semantic Density results in an even better fit 

to the data (see Table 2), with Semantic Density again showing the same types of effects as 

illustrated in Figure 1. This shows that any family size measure explains variance in the RTs 

that is not explained by Semantic Density. 

 

Table 2. Comparisons between a) the Baseline model plus Semantic Density by 

Morphological Structure and b) the Baseline Model plus Semantic Density by Morphological 

Structure and plus any family size predictor by Morphological Structure. 

Family Size Predictor Χ2(8.00) p 

Classical Family Size 12.087 .002 

Semantic Family Size 13.664 < .001 

Semantic Form Overlap Family Size 28.680 < .001 

 

A summary of the best model, which includes Semantic Form Overlap Family Size in 

interaction with Morphological Structure, is similar to the summaries of the other two models 

with family size predictors and can be seen in Appendix A. As shown in Figure 2, the effect 

of Semantic Form Overlap Family Size is facilitative, as expected, but the size of the effect 

varies with the word’s morphological structure. 
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Figure 2. Partial effect of log-transformed and centred Semantic Form Overlap Family Size 

(FS; x-axis) on log-transformed RTs (y-axis) for words with different morphological 

structures (panels). The density plots below the x-axes indicate the number of responses to 

words with the corresponding Semantic Form Overlap FS. 

 

Finally, Figure 3 shows that adding a family size predictor to the baseline model 

improves this model more than adding a family size predictor to a model that also contains 

the predictor Semantic Density. These results suggest that Semantic Density partially 

explains the same variance in the RTs as the family size predictors. 

 

Figure 3. Improvement of the model’s fit in terms of reduced AIC-points when either family 

size (FS) predictor is added to the baseline model (grey) and a model that also contains 

Semantic Density (black). 

 

 

6. Discussion 

 

This study has addressed the question whether the Discriminative Lexicon Model (DLM) can 

account for reaction times (RTs) from an auditory lexical decision experiment and for the 

family size effect in those RTs. We derived a measure, Semantic Density, from the 

computational model LDL-AURIS (Shafaei-Bajestan et al. 2023), which implements the 

DLM for auditory word recognition, and tested it against the RTs of the Dutch large-scale 
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auditory lexical decision experiment BALDEY (Ernestus & Cutler 2015). 

First, we investigated whether Semantic Density significantly accounts for variance in 

the RTs, which is the case. Our study thus enriches previous research that up to now has only 

shown that LDL-AURIS can recognise words approximately as accurately as human listeners 

(Shafaei-Bajestan et al. 2023), by showing that LDL-AURIS can also account for variance in 

auditory lexical decision RTs. Possibly, Semantic Density accounts for less variance in the 

RTs to words containing both a prefix and a suffix than to words of a simpler morphological 

structure due to sparseness of those complex words in LDL-AURIS' training set. 

In our study, Semantic Density yielded an inhibitory effect. This may be surprising 

because Heitmeier and colleagues (2023b) reported a facilitative effect. One explanation for 

the inhibitory effect is already suggested by Heitmeier and colleagues: A higher Semantic 

Density implies that the meaning computed by LDL-AURIS is more similar to more words in 

the lexicon, which may render it more difficult to identify which of the meanings in the 

lexicon was intended. Our finding that a greater competition between meanings results in 

longer RTs is in line with cohort-driven auditory word recognition models such as DIANA 

(ten Bosch et al. 2022). The inhibitory effect in BALDEY suggests that in this experiment, 

participants only accepted a word as a real word when they knew the word’s meaning. In 

visual lexical decision experiments, participants may already have accepted a word because it 

was word-like, leading to a facilitative effect of Semantic Density.  

Second, we investigated whether any of the three family size measures that we tested 

accounts for variance in the RTs that is not accounted for by Semantic Density, which is the 

case for all of them. Because this shows that Semantic Density does not fully account for the 

family size effect, we finally tested whether Semantic Density at least partially accounts for 

family size effects. For doing so, we tested whether adding any family size measure to a 

model containing Semantic Density improves the fit to the data less than adding this family 

size measure to a model without Semantic Density. This appeared to be the case, for all three 

family size measures. Therefore, our results suggest that Semantic Density at least partially 

accounts for the family size effects in listening. Our study therefore expands previous 

research by showing that not only the visual but also the auditory family size effect can at 

least partially be understood in terms of discriminative learning in the DLM. 

 LDL-AURIS relies on associations between forms and meanings. A given association 
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is strengthened by more word tokens supporting this association (i.e., by more family 

members showing form overlap). Consequently, it may be expected that LDL-AURIS is most 

effective in explaining the effect of Semantic Form Overlap Family Size. As mentioned 

above, we tested for each family size measure to what extent it improves a model with and 

without Semantic Density. The more the addition improves a model without Semantic 

Density compared to the model with Semantic Density, the more effectively Semantic 

Density explains the effect of this family size measure. Contrary to expectations, Semantic 

Density explains the effect of Semantic Form Overlap Family Size to a lesser extent than the 

other two family size measures’ effects. Apparently, the associations between form and 

meaning in the DLM contain slightly different information than Semantic Form Overlap 

Family Size. A probable cause is that associations between forms and meanings in the DLM 

are not only strengthened by word tokens supporting these associations, but also weakened by 

word tokens that do not support these associations, by representing similar forms but different 

meanings, or vice versa. Another probable cause is that LDL-AURIS is trained on word 

tokens whereas family size is based on word types. The association strength between a form 

and a meaning in LDL-AURIS can therefore represent different information from the 

Semantic Form Overlap Family Size of the word form. 

Our study does not rule out that the auditory family size effect can be completely 

understood in terms discriminative learning in the DLM for auditory word recognition. 

Future research might derive a measure from the DLM that can account for the full variance 

explained by family size measures. Such a measure should probably not combine both 

positive and negative evidence for the association between forms and meanings in a single 

measure, like Semantic Density does, but purely reflect positive, morphological information. 

In conclusion, our results show that the DLM contributes to explaining the variance in 

the RTs of an auditory lexical decision experiment. Moreover, the DLM can account for parts 

of the variance that is accounted for by family size measures. Future research has to show 

what this latter finding means for the DLM: whether a different measure can be derived from 

DLM implementations that can fully explain family size effects or whether the model first 

has to be adapted. 
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Appendix A 

 

Summary of the baseline model plus Semantic Density and Semantic Form Overlap Family 

Size and interactions, fitted to log-transformed RTs in our subset of BALDEY. 

A. parametric coefficients Estimate Std. Error t-value p-value 

(Intercept) 6.22343 0.03595 173.127 < .001 

MorphStrprefixed 0.03174 0.04600 0.690 .490 

MorphStrsuffixed -0.02794 0.01152 -2.837 .015 

MorphStrdouble-affixed -0.15014 0.05292 -2.424 .005 

B. smooth terms Edf Ref.df F-value p-value 

s(SemDensity:MorphStrsimplex) 1.855 1.979 75.543 < .001 

s(SemDensity:MorphStrprefixed) 1.372 1.606 5.076 .006 

s(SemDensity:MorphStrsuffixed) 1.978 1.999 286.310 < .001 

s(SemDensity:MorphStrdouble-affixed) 1.000 1.000 0.006 .938 

s(FamilySize:MorphStrsimplex) 1.000 1.000 20.716 < .001 

s(FamilySize:MorphStrprefixed) 1.000 1.000 6.809 .009 

s(FamilySize:MorphStrsuffixed) 8.116 8.784 6.005 < .001 

s(FamilySize:MorphStrdouble-affixed) 1.000 1.000 12.308 < .001 

s(Freq) 4.805 5.992 6.848 < .001 

s(maRT) 4.869 6.084 302.558 < .001 

s(Trial) 6.376 7.534 4.595 < .001 

s(participant) 18.549 19.000 27.955 < .001 

s(participant, Trial) 15.636 19.000 8.214 < .001 
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