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Previous research has demonstrated that language use can vary depending on the 

context of situation. The present paper extends this finding by comparing word 

predictability differences between 14 speech registers ranging from highly informal 

conversations to read-aloud books. We trained 14 statistical language models to 

compute register-specific word predictability and trained a register classifier on the 

perplexity score vector of the language models. The classifier distinguishes perfectly 

between samples from all speech registers and this result generalizes to unseen 

materials. We show that differences in vocabulary and sentence length cannot explain 

the speech register classifier’s performance. The combined results show that speech 

registers differ in word predictability.  
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1. Introduction 

 

People communicate in different situations and modalities, ranging from casual 

conversations between friends to formal lectures or public addresses. Many previous 

studies have shown that these different situations elicit different language use; see 

Biber & Conrad (2009) for an overview. The term ‘register’ is used to provide a link 

between a communicative act and the context of the situation it occurs in (Marco, 

2000). Likewise, we will use the term register to refer to language variation in relation 

to the situation of use (see Lee, 2001 for a discussion). In this paper, we investigate 

register-specific differences in word predictability, defined as the conditional 

probability of a word given the preceding words. We conducted five experiments to 

test whether speech registers differ in word predictability. 

 To investigate register differences in word predictability, we use statistical 

language modelling, a technique widely used within the discipline of Natural 



	

Language Processing (NLP). We compute register-specific word predictability scores 

with the aid of statistical language models (SLM) and use these scores to train a 

speech register classifier. The performance of the classifier shows, to what extent 

speech registers differ in word predictability. In Section 2, we will explain how this 

NLP approach complements register analysis. In Section 3, we introduce the corpora 

we use for this study and outline our analysis approach. In the following sections, we 

describe the experiments we conducted. In Study 1, we investigate how to create 

SLMs that allow cross register comparison. In Study 2, we train and test register-

specific SLMs to estimate register-specific word predictability. These word 

predictability scores are then used to train a speech register classifier. In Study 3, we 

validate the results from Study 2, by testing the speech register classifier on the 

validation corpus. In Study 4, we investigate the amount of data necessary for 

classification. Finally, in Study 5, we investigate the influence of average sentence 

length on word predictability. We end with a general discussion of our findings. 

 

 

2. Characterizing text in register analysis and natural language processing 

 

The most fundamental approach in register analysis is to count lexico-grammatical 

features (e.g. demonstrative pronouns), and compare their prevalence across registers. 

The studied materials may be written, or consist of orthographic transcription of 

speech samples. For example, Tottie (1991) investigates differences between spoken 

and written British English and found that negatives are twice as prevalent in spoken 

language as in written text. Van Gijsel et al. (2006) compare excerpts from different 

speech registers in Dutch and show that word type-token ratio (TTR) is lower for 

informal dialogues than for formal monologues.  

Biber (1988, 1995) develops an approach for register analysis known as 

multidimensional analysis, which aims at identifying co-occurring linguistic features 

and discovering underlying dimensions of language use by means of factor analysis. 

For example, Biber (1988) finds that discourse particles, first and second person 

pronouns, and present tense verbs are typical of involved language. Conversely, a high 

frequency of nouns and prepositions and a high word type-token ratio are typical of 

informational language. The dimensions can be used to group or distinguish between 



	

different registers and give a functional interpretation to the patterns of lexico-

grammatical features (Biber & Conrad, 2009). 

In contrast to the interpretative approach of register analysis, text classification 

methods as developed within the discipline of NLP, characterize texts by a large set of 

(mostly) automatically generated features (see Killgariff, 2001 for an overview). The 

feature set typically consists of n-grams, which can for example consist of POS tags, 

or words. Based on n-grams, an SLM can be created that estimates the probability of a 

word given the preceding words. SLMs are a staple technology for applications such 

as machine translation, automatic speech recognition, and document retrieval 

(Jurafsky & Martin, 2009). 

Both register analysis and NLP have advantages and disadvantages. For 

example, because register analysis uses a relatively small set of lexico-grammatical 

features to describe and interpret differences between registers (Biber & Conrad, 

2009), it precludes data-driven research. Registers can only be characterized with 

features that are defined beforehand, based on previous research or on the researcher’s 

intuitions. Statistical language modelling avoids this and opens up the possibility of a 

data-driven search of patterns in a corpus.   

From the perspective of register analysis, there is a disadvantage to SLMs; 

because typically many features are used, the interpretation of patterns of textual 

differences is difficult. The feature set is essentially a long list of item co-occurrence 

statistics, and therefore ill-suited for human interpretation. Still, n-grams are a 

valuable tool for various types of analysis. For example, Gries (2001) successfully 

uses the statistics of word co-occurrences to disambiguate the meanings of near 

synonyms. Denoual (2006) uses character n-grams (i.e. based on graphemes instead of 

words) to classify texts on a dimension ranging from literary to oral.  

We propose that investigating the distribution of word n-grams across speech 

registers may reveal register differences not accessible with current register analysis 

tools. We use word n-grams because they are theory neutral; only minimal 

assumptions have to be made to count and compare n-grams of words (see also Gries 

& Ellis, 2015: 231). Moreover, previous research shows that listeners are sensitive to 

the statistics of word n-grams.  

For our current study, word predictability is a crucial concept. We define word 

predictability as the probability of a word given the previous context (i.e. the 

preceding words). For example, the predictability of the word gun given the context 



	

The policeman pulled out his … is high compared to a word like socks. Word 

predictability is thus the conditional probability P(word|context) of a word word given 

the preceding context context, which can be estimated with an SLM (e.g., Smith & 

Levy, 2013). 

Word predictability plays an important role in language comprehension (e.g. 

Kutas et al., 2010). Converging evidence from studies using different methodologies 

such as self-paced reading (e.g. Monsalve et al., 2012; Smith & Levy, 2013), eye-

tracking (e.g. Frisson et al., 2005), EEG (e.g. Van Berkum et al., 2005), and fMRI 

(e.g. Willems et al., 2016) show that that the processing of speech and text is 

influenced by the predictability of a word given the previous context. For an overview 

of frequency effects in language processing, see Ellis (2002). 

Word predictability also plays a role in language production. For example, 

Bell et al. (1999) found that the pronunciation of English function words depends on 

word predictability, whereby less predictable words are pronounced in fuller form. 

Similarly, Pluymaekers et al. (2006) found that the duration and number of segments 

of Dutch suffixes are influenced by the predictability of the carrier word. 

The widespread and converging evidence for the importance of word 

predictability in language comprehension and production led us to investigate to what 

extent word predictability differs across registers. One reason to suspect differences is 

the aforementioned finding that lexical richness differs across speech registers (e.g. 

Van Gijsel et al., 2006); more formal registers have higher word type-token ratios 

than more informal registers. If one register contains more word types compared to 

other registers, it is likely that this influences word predictability. We will use SLMs 

to compute register-specific word predictability and test whether predictability 

patterns distinguish between registers.  

 

 

3. Methodology 

 

We describe the corpus we use in Section 3.1 and our methods of analysis in 3.2.  

 

  



	

3.1 Corpus 

 

We used a subset of the Spoken Dutch Corpus (Oostdijk, 2001). This corpus is ideally 

suited to investigate speech register differences, because it consists of components 

reflecting speech in different situations of use, ranging from spontaneous 

conversations to television news broadcasts and read-aloud stories. We used the 

orthographically transcribed recordings of adult native speakers in the Netherlands. 

We excluded the Flanders part (approximately one-third) of the corpus, because 

possible differences between Northern Dutch and Flemish Dutch speech styles are 

outside the scope of our study. In addition, we excluded one component (“Masses and 

solemn speeches”) because it is comparatively small (fewer than 6,000 word tokens). 

This left 14 components for analysis (see Table 1). This subset consists of 

approximately five million word tokens of Netherlandic Dutch speech, a variety of 

Dutch spoken in the Netherlands. 

 
Table 1. Overview of the 14 components in the Spoken Dutch Corpus used for Studies 1 - 4  
ID Component description 

a Spontaneous conversations (face-to-face) 
b Interviews with teachers of Dutch 
c Spontaneous telephone dialogues via a platform 
d Spontaneous telephone dialogues via a minidisc recorder 
e Business negotiations 
f Radio and television interviews and discussions 
g Debates, discussion and meetings (especially political) 
h Classes 
i Spontaneous radio and television commentaries (e.g. sports) 
j Radio and television newsroom and documentaries 
k News broadcast on radio and television 
l Reflections and commentaries broadcast on radio and television 
n Lectures and speeches 
o Read-aloud stories 
 

We also created a validation corpus to validate our findings and ensure they 

generalize beyond the materials in the Spoken Dutch Corpus. It consists of materials 

from three different corpora: two corpora of Dutch spontaneous speech, the Institute 

of Phonetic Sciences Amsterdam Dialogue Video Corpus, henceforth IFADV (Van 

Son et al., 2008), and the Ernestus Corpus of Spontaneous Dutch, henceforth ECSD 

(Ernestus, 2000), and two components of the STEVIN Dutch Reference Corpus, 



	

henceforth SoNaR, (Oostdijk et al., 2013), namely a subset of Dutch teleprompt texts 

(news broadcasts) and Dutch books. We will refer to the combination of these new 

materials as the validation corpus, which consists of approximately 2.2 million word 

tokens.  

The materials in the validation corpus were chosen because they correspond to 

three specific components in the Spoken Dutch Corpus. The two corpora of 

spontaneous speech (IFADV and ECSD) correspond to component “a” (“Spontaneous 

conversations”), the set of Dutch teleprompt texts correspond to component “k” 

(“News broadcasts on radio and television”) and, finally, the Dutch books correspond 

to component o (“Read-aloud stories”). 

The SoNaR texts are not an orthographic transcription of speech, while this is 

the case for all other corpora that were used in this study. They are nevertheless 

similar to the respective components “k” and “o” in the Spoken Dutch Corpus, 

because news broadcasts (component “k”) are typically read from teleprompts and 

should conform to the teleprompt texts closely, and read-aloud stories (component 

“o”) are a collection of read-aloud audiobooks. Still, differences could occur between 

the SoNaR materials and the orthographically transcribed texts, for instance, in the 

placement of sentence boundaries. 

 

 

3.2 Analysis  

 

We used SLMs to investigate whether speech registers influences word predictability. 

The reasoning is as follows. SLMs are sensitive to the difference between the 

language materials they are trained on and the materials they are tested on. The 

performance of a language model in terms of predicting the next word correctly on the 

basis of a sequence of previous words is known to suffer in general if the difference 

between the training and test set increases. We assert that this is also likely to apply to 

differences in speech register. For example, if an SLM is trained on spontaneous 

conversations and subsequently tested on read-aloud stories, the model’s predictive 

performance (i.e. its ability to assign the correct probability to the next word given the 

preceding context) is likely to be worse than in a test on an unseen set of spontaneous 

conversations. SLM performance can thus be utilized to assess the similarity of 

different registers to the register the model was trained on. We use this language 



	

model characteristic to determine word predictability differences between speech 

registers. 

To test whether speech registers systematically differ in word predictability, 

we train a classifier on the SLM performance measures. If word predictability differs 

between speech registers, the classifier should be able to differentiate these registers 

and achieve good register classification results. In addition, we investigate the amount 

of data necessary to achieve accurate classification of speech registers. Furthermore, 

we aim to rule out that our classifier results are driven by sentence length differences 

between speech registers. This is important because sentence length could influence 

the SLM results, as SLMs tend to assign higher likelihood scores to shorter sentences. 

Furthermore, registers can differ in sentence length (Wiggers & Rothkrantz, 2007). 

Because we aim to compare SLM word predictability scores between 

registers, the SLM vocabulary (i.e. a list of all words used to train the SLM) deserves 

special consideration. An SLM’s vocabulary is typically based on the texts it is 

trained on, referred to as a ‘training set’. The ‘out-of-vocabulary words’ (i.e. words 

not part of the language model, also referred to as ‘OOV words’) are typically ignored 

in performance evaluation. However, we train SLMs on different registers and want to 

compare between them. If the number of OOV words differs between SLMs trained 

on different speech registers, this can influence test results of the SLM; for instance, if 

a register contains many OOV words, the SLM could attain an artificially boosted 

performance. Therefore, for a fair comparison between all register-specific SLMs, 

they should have the same register-insensitive vocabulary.  

For the creation of the fixed SLM vocabulary, we need a corpus containing 

multiple registers and an approach for vocabulary word selection. Two extreme 

approaches are possible: ‘greedy selection’, that is, selection of all or nearly all words 

occurring in the corpus; or ‘robust selection’, that is, selection of only those words 

that are most likely present if the corpus would be created again, regardless of 

register. For example, consider the word gamble, which can be used in many different 

registers, while the word inning typically occurs in sports commentaries. In this 

example, the word gamble is a good candidate for a robust vocabulary, while inning 

may not be.  

The advantages of greedy selection are the maximum use of available data and 

a straightforward inclusion criterion, which typically consists of the selection of all 

words occurring above a certain frequency threshold (e.g. word frequency of 5) in the 



	

corpus.  The disadvantage of greedy selection relates to the unreliability of the 

decision to include a word. For example, the ‘burstiness’ of words, the phenomenon 

that a word’s likelihood increases if it has been used recently (Church & Gale, 1995), 

lead to an uneven distribution of tokens throughout a corpus. These findings make 

word frequency an unreliable measure to base word selection criteria on (Kilgariff, 

2001; Gries & Ellis, 2015). 

Robust selection addresses the word burstiness problem. Savický & Hlaváčová 

(2002) developed a metric called average reduced frequency (ARF), which adjusts 

word frequency based on the word’s dispersion in a corpus, whereby a word with low 

dispersion (i.e. with a bursty distribution) results in a lower ARF as compared to a 

word that is more evenly distributed (cf. Section 4.1). If a word is used regularly 

throughout the corpus, it is more likely it will be found again in a newly sampled 

corpus, whereas a word that only occurs in local bursts may be an idiosyncratic (e.g. 

topical) characteristic of a specific corpus. Therefore, a vocabulary based on the 

highest scoring ARF words could improve word selection quality. 

A potential disadvantage of robust selection is the reduction of the available 

data, because the resulting vocabulary will be significantly smaller than the 

vocabulary resulting from greedy selection. In addition, the word exclusion criterium 

is more complex and the quality of the vocabulary depends on the viability of these 

criteria. In sum, both approaches have their advantages and disadvantages, and it is 

unclear whether greedy or robust selection is the best way to create an SLM 

vocabulary for our purposes. Therefore, we test the greedy and robust SLM 

vocabulary selection strategies in Study 1 and select the best approach. The four 

subsequent studies use this approach to create SLMs. In these studies we test word 

predictability differences between registers, rule out confounds, and test the 

robustness of the found differences between registers. The methodological details of 

each study will be discussed in the respective sections.  

 

 

4. Study 1: SLM vocabulary selection 

 

In study 1 we tested whether robust or greedy selection is better suited for the creation 

of a SLM vocabulary. 

 



	

 

4.1 Procedure 

 

We extracted the orthographic transcriptions from the Spoken Dutch Corpus and 

removed the special corpus-specific word codes (explicitly marking foreign words, 

dialectal words, regionally accented words, new words, interjections, onomatopoeia, 

hesitations and mispronunciations, see Goedertier et al., 2000). Further text 

normalization was not necessary because the orthographic transcriptions were already 

tokenized and normalized according to the protocol described in Goedertier et al. 

(2000). 

We defined word type as the word surface form (i.e. run and runs are two 

different word types) and created the greedy vocabulary by selecting the 50,000 most 

frequent word types from the corpus. We created the robust vocabulary by ranking 

word types based on their average reduced frequencies (see below) and selected all 

word types with an average reduced frequency (ARF) of at least 50. This lower bound 

of the ARF was based on the trade-off between coverage and the constraint that word 

types should be present in most components of the corpus. This resulted in a list of 

585 words types, covering 77.5% of all word tokens in the corpus.  

To compute the ARF of each word in the corpus, we extracted the first 61,834 

word tokens (i.e. the number of tokens in the smallest component) from each 

component, which ensures that the ARF scores are not influenced by the amount of 

materials of each component in the corpus. We then calculated the reduced frequency 

(RF) of each word (Savický & Hlaváčová, 2002). The RF (Equation 1) equals the 

word’s frequency if the word is evenly distributed throughout the corpus, while it has 

a lower bound of one if the word is clustered in one location in the corpus (Hlaváčová 

& Rychly, 1999). That is, words with the highest ARF are those words that occur 

evenly throughout the corpus and are therefore neither topic-specific nor register-

specific.  

To compute the RF for each word w, the corpus is divided into a number of 

intervals (Nintervals) equal to the frequency of word w. The RF is then computed as the 

number of intervals word w occurs in. Therefore, it is important to keep the original 

word order of texts and to group register-specific texts together. 
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The RF depends on the start and end points of the intervals and the start point of the 

first interval determines the start and end points of all other intervals. There are many 

possible starting points for the first interval. To avoid this arbitrariness, the RF is 

calculated for all non-redundant starting points in the corpus, that is, for the first word 

of the corpus, up to and including the word with number v = ⌊𝑁$KLMN/𝑁3PCQLRSTN⌋, 

where v denotes the number of starting points, Nwords the number of word tokens in the 

corpus and Nintervals denotes the number intervals the corpus is divided into. We 

computed the average reduced frequency for each word by averaging over all RFs. 

To compare the greedy and robust vocabularies, we created two versions of 

our corpus. All OOV words were mapped to the dummy string unk. In one version, 

we used the greedy vocabulary to determine the OOV words and in the other version 

we used the robust vocabulary.  

We used frequency profiling, described in Rayson & Garside (2000), to 

discover those n-grams (restricted to unigrams, bigrams or trigrams) in each 

component that distinguish a given component from the other components, for both 

the greedy and robust corpus versions. Frequency profiling compares the frequency of 

a n-gram in different corpora by computing the log-likelihood (Equation 2) of the n-

grams frequency in one corpus compared to the frequency in one or more other 

corpora.  For the computation of the log-likelihood we used the regular frequency (not 

the ARF) of the n-gram.  

 

LLn-gram = 	2 W	∑ 𝑂33 	𝑙𝑛 YZ*
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In Equation 2 Oi denotes the n-gram frequency in the i-th corpus. Ei denotes the 

expected value of the n-grams frequency in the i-th corpus and is computed according 

to Equation 3, 

 

(1) 

(2) 
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where Ni refers to the total number of n-gram tokens in the i-th corpus. 

To compute the log-likelihood statistic we used the Colibri-Core toolkit (Van 

Gompel & Van den Bosch, 2016), which includes an implementation of frequency 

profiling. To investigate n-grams that are specific for a component compared to the 

rest of the corpus, we used the leave-one-out approach; we compared all n-grams in 

each component against the combination of the 13 other components. The log-

likelihood statistic was calculated for all word unigrams, bigrams and trigrams, for 

both the robust and greedy corpus.  

 

 

4.2 Results and discussion 

 

The Colibri-Core toolkit returns n-gram lists ranked on log-likelihood, whereby the n-

grams that distinguish a component most compared to the others are ranked at the top. 

We checked whether the greedy vocabulary resulted in a more uneven distribution of 

word forms across components compared to a robust vocabulary. We found that this 

was indeed the case. To illustrate this, we list the highest ranking unigrams for a 

sample of four components, in Table 2 for the greedy vocabulary version, and in 

Table 3 for the robust vocabulary version.  
 
 
Table 2. Overview of the most distinguishing word forms of four speech registers based on 
frequency profiling, greedy vocabulary (50,000 most frequent word forms) 
Casual 
conversation 

Interviews with 
teachers of Dutch 

Political debates Sports commentary 

ja (“yes”) uh (“ehm”) het (“it”) bal (“ball”) 
nee (“no”) leerlingen (“pupils”) de (“the”) Kluivert* 
oh (“oh”) Nederlands (“Dutch”) voorzitter (“chairman”) Bergkamp* 
‘k (“I”) lezen (“read”) motie (“motion”) Zenden* 
zo (“later”) onderwijs (“education”) u (“you”) de (“the”) 
echt (“really”) literatuur (“literature”) heer (“gentlemen”) Davids* 
mmm (“ehm”) klas (“class”) van (“of” balbezit (“ball possession”) 
wel (“well”) school (“school”) mevrouw (“lady”) Overmars* 
gewoon (“just”) vak (“course”) minister (“minister”) Boer* 
maar (“but”) ik (“I”) vraag (“question”) Cocu* 

(3) 



	

NOTE: * name of Dutch soccer player 
 
 
Table 3. Overview of most distinguishing words of four speech registers based on frequency 
profiling and a robust vocabulary (585 top ranking ARF words) 
Casual  
conversation 

Interviews with 
teachers of Dutch 

Political debates Sports commentary 

ja (“yes”) uh (“ehm”) het (“it”) unk* 
nee  (“no”) lezen (“read”) voorzitter (“chairman”) de (“the”) 
oh (“oh”) school (“school”) de (“the”) speelt (“plays”) 
'k (“I”) ik (“I”) u (“you”) nul (“zero”) 
zo (“later”) vind (“think”) heer (“gentlemen”) nu (“now”) 
wel (“well”) mmm (“ehm”) van (“of”) helft (“half”) 
mmm (“ehm”) heel (“very”) minister (“minister”) voor (“before”) 
echt (“really”) dus (“so”) unk* meter (“meter”) 
maar (“but”) ben (“am”) vraag (“question”) tweede (“second”) 
gewoon (“just”) kinderen (“children”) om (“to”) gaat (“go”) 
NOTE: * unk is the dummy string that out-of-vocabulary words are mapped to. 
 

We observe that the greedy selection approach produces a topicality confound (i.e. 

differences in n-gram frequency between components due to the topics discussed in 

the components). For example, the component containing interviews with teachers of 

Dutch contains many words specifically related to education (e.g. the Dutch 

equivalents of pupils, school, class), while the sports commentary component 

contains many proper names of Dutch soccer players (e.g. Kluivert, Zenden).  A 

similar pattern is present in the higher order n-grams (i.e. bigrams and trigrams). 

Consequently, if we create SLMs based on a greedy vocabulary, it will not be possible 

to ascertain whether components are distinguished based on register or topic. The 

robust strategy, as illustrated in Table 3, attenuates the topicality confound. For 

example, the most distinguishing words for the sports commentary do not include 

proper names, and we see only few terms specifically related to education for the 

component containing interviews with teachers of Dutch. Note that, by using ARF to 

select words, we do not restrict the vocabulary to function words. As can be observed 

in Table 3, content words are also present in the robust vocabulary. 

In sum, Study 1 showed that a greedy vocabulary introduces a topicality 

confound. Such a vocabulary contains many words that are specific for topics that 

happened to be discussed in one or several components of the Spoken Dutch Corpus. 

As a consequence, when we train the speech register classifier based on the SLM 

results obtained with the greedy vocabulary, we do not know whether speech registers 



	

are distinguished based on genuine register-specific word predictability or the 

coincidental distribution of topic-specific words. The robust vocabulary remedies this 

confound by excluding words that are not evenly distributed across the corpus.  

 

 

5. Study 2: Training and testing of the speech register classifier  

 

In Study 2 we test whether we can distinguish between register-specific components 

of the Spoken Dutch Corpus with a classifier based on word predictability. 

 

 

5.1 Procedure 

 

We used the same subset of the Spoken Dutch Corpus as described in Study 1 to train 

SLMs and create the speech register classifier. The Spoken Dutch Corpus was pre-

processed as described in Study 1. We trained register-specific tri-gram models with 

the SRILM-toolkit1 (Stolcke, 2002), using the robust vocabulary created in Study 1. 

For smoothing, we used Witten-Bell discounting with interpolation (Witten & Bell, 

1991). We could not use the standard smoothing technique, that is, modified Kneser-

Ney discounting (Chen & Goodman, 1998), because of our small vocabulary of 

relatively frequent words. Kneser-Ney discounting needs counts of infrequent n-

grams to asses the probability mass needed for unseen n-grams. Witten-Bell is able to 

deal with truncated count-of-count lists2 because it uses the first occurrence of n-

grams to assess the probability mass needed for unseen n-grams. 

To create register-specific SLMs, we first mapped all OOV word tokens to the 

dummy string unk. The mapping was used to maintain the serial structure of the 

sentences. Next, we created training and test sets for each component in the Spoken 

Dutch Corpus by grouping all sentences of a given component into a single text file. 

Subsequently, the sentences of a given component were randomly assigned to one of 

ten equally-sized partitions to ensure a fair sampling of the register in all of the 

partitions. 

For each component we ran a ten-fold cross-validation experiment on the 

partitions, using nine parts for training and one part for testing in a rotating fashion 

(see also Figure 1). The ten-fold cross-validation experiments yield perplexity scores 



	

for each of the ten folds. Perplexity is a measure of how well a register-specific SLM 

predicts words (based on the preceding words) in new, unseen texts. Importantly for 

our study, registers similar to the SLM will generate lower perplexity scores than less 

similar registers. 

The perplexity scores were computed with Equation 4, where word stands for 

a specific word token in the test file and context stands for the preceding words 

(maximally a bigram). 𝑁$KLMN	and 𝑁NQPCQP_QN  represent the number of word tokens 

and sentences in the test set, respectively, and 𝑁ZZ`	represents the number of out-of-

vocabulary words, which always equal 0 in our test sets, because all OOV words were 

mapped to the unk token.  
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Figure 1. Workflow overview for the creation of a speech register classifier based on word 1 
predictability 
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o 7 102 167 ... 82    o

Training

 

 a  b  ... o  predicted
 

a 3 54 67 ... 345    a
a 7 51 57 ... 344    c
... ... ... ... ...
b 2 124 110 ... 80    b
b 9 122 109 ... 219    h
... ... ... ... ...
o 1 105 174 ... 98    o
o 8 102 167 ... 82    o

Test

...1 2 109

 test set b 1

SLM b 1

...1 2 109

 test set o 1

SLM o 1

tra
in

in
g

...1 2 109

 test set a 1

SLM a 1

tra
in

in
g

SLM test-scores (perplexity) measure the model’s 
ability to predict upcoming words based on 
pre-context. Lower scores indicate better perfor-
mace

tra
in

in
g

(4) 



	

 

For each test file (ten from each of the 14 components), we created a 14-dimensional 

vector of perplexity scores (i.e. a list of 14 perplexity scores, one for each SLM) by 

applying all 14 trained language models to that test file. The resulting perplexity 

vector describes how well the test file is predicted by the 14 register-specific language 

models. The perplexity vectors for the 140 test files form a 140-by-14 similarity 

matrix, whereby each row describes the location of a test file in a 14-dimensional 

space, while the columns correspond to the register-specific SLMs in the Spoken 

Dutch Corpus. The perplexity similarity matrix shown in Figure 1 (step 3) is a subset 

of the complete similarity matrix we created based on the 14 components in the 

Spoken Dutch Corpus.  

We used Linear Discriminant Analysis (LDA) to create a speech register 

classifier based on the similarity matrix. LDA finds a linear combination of features 

that maximizes class separation (see Equation 5).  

 

𝑥r = 	𝑎𝑟𝑔𝑚𝑎𝑥	𝑥 	 j
, ∑ ju

j, ∑ jk
       

The between-class and within-class scatter matrices are represented by ∑ 	v and ∑ 	$  

respectively. A vector of weights 𝑥r is found that maximizes the coefficients of the 

between-class and within-class scatter matrices, which results in an optimal class 

separation when two assumptions hold about the data: homoscedasticity (identical 

within-class scatter matrices) and within-class multivariate Gaussian distributions. 

Because our data do not conform to these assumptions, we validated our classifier, as 

will be discussed in Study 3. 

 

 

5.2 Results and discussion 

 

The speech register classifier was able to distinguish perfectly (accuracy 100%, on the 

held-out test sets) between all registers within the Spoken Dutch Corpus material. 

Compared to chance performance (accuracy 7.14%), the speech classifier performed 

considerably better. Performance metrics in terms of precision, recall and f1 can be 

found in Appendices 1–8. 

(5) 



	

  

 

6. Study 3: Validation of the speech register classifier 

 

We showed that a classifier based on register-specific word predictability can 

distinguish between speech register-specific components (Cf. Study 2). In study 3 we 

tested whether the classifier is indeed sensitive to register differences between 

components. Furthermore, the LDA assumptions do not hold for our dataset and it 

was therefore important to test the robustness of our results. First, we compared the 

results of the speech register classifier with a classifier trained on a random version of 

the corpus, and second, we tested the speech register classifier on materials from 

different corpora, to test whether the performance of the classifier generalizes to new 

data. 

 

 

6.1 Procedure 

 

We constructed 1,000 pseudorandom corpora with materials from the Spoken Dutch 

Corpus to validate the speech register classifier. For each pseudorandom corpus the 

sentences from the Spoken Dutch Corpus were randomly assigned to one of 14 

components. The random components were made to contain as many word tokens as 

the original components in the corpus. We trained component-specific SLMs and 

tested these on held out test sets with ten-fold cross validation as in Study 2). 

Subsequently, we trained an LDA classifier for each pseudorandom corpus, also 

following the procedure of Study 2. If the speech register classifier based on the real 

corpus outperforms the classifiers based on the pseudorandom corpora, then the 

classification accuracy of the register classifier must be due to the grouping of 

sentence according to speech register. 

The four components in the validation corpus were pre-processed individually. 

Since IFADV was annotated with the same protocol as used for the Spoken Dutch 

Corpus (Van Son et al., 2008; Goedertier et al., 2000), we used the same pre-

processing steps as in Study 1. The ECSD used a slightly different annotation style 

with more elaborate punctuation. To approximate the annotation and tokenization of 

the Spoken Dutch Corpus, we created sentences by splitting the text materials on 



	

question marks, exclamation marks, commas and points. We replaced the capital letter 

at the start of each sentence with the lowercase equivalent, even if it was part of a 

proper name, since proper names were not included in the SLM vocabulary.  

All sentences in the teleprompt texts and Dutch books from the SoNaR corpus 

already start with lower-case characters. We split on questions marks, exclamation 

marks, colons, commas and points and removed all remaining punctuation. For the set 

of teleprompt texts, we also removed special recording instructions (e.g. start audio). 

The four components in the validation corpus were each split into ten equally 

sized partitions, equal to the ten-fold cross-validation structure we created for the 

Spoken Dutch Corpus. On each partition we applied the corresponding SLMs trained 

on the Spoken Dutch corpus. The resulting perplexity vectors were used as classifier 

test sets for the register classifier trained on the materials from the Spoken Dutch 

Corpus. Importantly, the validation materials did not influence the SLMs (which were 

exclusively trained on the Spoken Dutch Corpus) and did not influence the register 

classifier (which were trained only on the perplexity feature vectors from the Spoken 

Dutch Corpus).  This validation therefore provides a strong test of whether our 

approach generalizes to new unseen data. 

 

 

6.2 Results and discussion 

 

The classifiers based on the pseudorandom corpora performed poorly, with a mean 

accuracy of 12% and a standard deviation of 5%. The performance is close to chance 

level performance (accuracy 7%). The result shows that a classifier based on 

perplexity scores cannot distinguish between random collections of sentences. The 

high performance of the classifier developed in Study 2 therefore indicates that the 

components of the Spoken Dutch Corpus are more homogeneous than those in the 

pseudorandom Corpora and that they differ in word predictability. 

The speech register classifier developed in Study 2 yields an accuracy score of 

93% on the validation corpus, compared to 100% accuracy on the held out classifier 

test sets of the Spoken Dutch Corpus. The classifier thus attained a high accuracy on 

materials from new corpora, which shows that the speech register classifier is not 

overfitted to idiosyncratic aspects of the Spoken Dutch Corpus. The accuracy score on 

the validation corpus was not perfect, however. The confusion matrix in Table 4 



	

shows that all classification errors are made on the ECSD corpus of spontaneous 

speech. Interestingly, the ECSD is confusable with component “b”, (“Interviews with 

Teachers of Dutch”). There is considerable overlap between ECSD and component 

“b”, as both are unscripted dialogues, which suggests that the classification mistakes 

are not random. 

 
Table 4. Confusion matrix of the speech register classifier test on the validation corpus 
corpora a b k o 
SoNaR-books 0 0 0 10 
ECSD 7 3 0 0 
IFADV 10 0 0 0 
SoNaR-teleprompt 0 0 10 0 
 

In conclusion, a speech register classifier based on word predictability can distinguish 

between genuine speech registers, but not between randomly sampled sets of 

sentences. In addition, we showed that the register classifier cannot only classify 

materials from the training corpus (the Spoken Dutch Corpus), but also materials from 

the validation corpus. The combined results suggest that word predictability differs 

across speech registers. 

 

 

7. Study 4: How much text material is needed for speech register classification? 

 

The aim of Study 4 was to investigate the amount of text materials needed for a 

reliable register classifier. We divided the speech registers into differently sized 

subsets. Classifiers trained on smaller subsets are expected to especially confuse more 

similar registers, which would provide further evidence that classification is based on 

register characteristics. 

 

 

7.1 Procedure 

 

We used materials from the Spoken Dutch Corpus and the validation corpus as 

described in Section 3. We used a similar procedure to that described in Study 2 

except that we created perplexity vectors based on sets containing the following 



	

number of sentences from a specific speech register: 2, 4, 8, 16, 32, 64, 128, 256, 512, 

and 1024. We did this by dividing the text materials of each register from the Spoken 

Dutch Corpus into sets of a specific number of sentences. We computed the perplexity 

vectors for all sentence sets according to Equation 5 with the SLMs we created in 

Study 2. We trained and tested separate classifiers on the perplexity vectors for 

sentence sets with a given cardinality (i.e. 2, 4, … or 1024 sentences). For each 

register we randomly grouped half of the perplexity vectors for training and the other 

half for testing each classifier.  

In addition, we used the text materials from the validation corpus obtained in 

Study 3. We divided each register into sentence sets containing the same number of 

sentences as before (2, 4, … 1024) and computed the perplexity vectors for all 

sentence sets. The register classifiers we trained on the Spoken Dutch Corpus 

materials were used to classify the sentence sets from the validation corpus. Again a 

classifier trained on sentence sets with a given cardinality (i.e. 2, 4, … or 1024) was 

used to test sentences sets with the same cardinality. 

 

 

7.2 Results and discussion 

 

The results, shown in Figure 2, show that the speech register classifier reaches ceiling 

performance (100%) when using sets of 512 sentences, while the classification of the 

validation corpus reaches its maximum performance (95%) with sets of 256 

sentences. The accuracy results based on sets of 128 sentences are similar (92%) for 

the validation and Spoken Dutch Corpus. Larger sentence sets show slightly better 

performance for the Spoken Dutch Corpus, possibly a result of overfitting. 

For the smaller sets of 2 – 64 sentences, the accuracy results for the validation 

corpus are higher than for the Spoken Dutch Corpus, which might come as a surprise. 

However, the components of the validation corpus belong to three very distinct 

speech registers, while the Spoken Dutch Corpus consists of 14 speech registers, 

including closely related registers (e.g. spontaneous conversations and telephone 

dialogues). This makes classification of the registers in the Spoken Dutch Corpus 

harder.  

Importantly, with small sets of sentences reasonably high accuracy is 

achieved. For the Spoken Dutch Corpus only 64 sentences are needed for 90% 



	

accuracy and for the validation corpus only 16 sentences are needed for a similar 

accuracy. 

 

Figure 2. Speech register classifier accuracy as a function of the number of sentences in a set 

 
To investigate whether some speech registers are more similar in word predictability 

compared to others, we created a scatterplot based on the first two Linear 

Discriminants from the register classifier based on sets of 128 sentences (see Figure 

3). Each point in the scatterplot is based on a set of 128 sentences. The squares 

represent sentence sets from the Spoken Dutch Corpus and triangles represent 

sentence sets from the validation corpus (with the validation corpus components 

shown in capitals). The scatterplot shows that the four components of the validation 

corpus are located closely to the counterparts in the Spoken Dutch Corpus. Most 

registers are separated from all other registers except for the spontaneous dialogues 

(components “a”, “c”, “d”), which show considerable overlap.  
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Figure 3. Scatterplot of all registers in the Spoken Dutch corpus and the validation corpus 

plotted on the first two Linear Discriminants  

 
Taken together the results show that it is possible to classify registers with a small 

amount of speech (i.e. 128 sentences) with high accuracy (92%). The scatterplot and 

the classification errors show that the spontaneous registers are similar, while all other 

components in the Spoken Dutch Corpus are more distinct. 

  

 

8. Study 5: The sentence length confound 
 

Study 5 addressed the potential sentence length confound, because the different 

components in the Spoken Dutch Corpus show a wide range in the average length of 

sentences, which could influence perplexity scores. The classifier may therefore be 

based on average sentence length rather than on word predictability. We investigated 

this possibility by selecting a subset of our materials in such a way to reduce the 
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difference in average sentence length between components. Furthermore, we created a 

classifier based on sentence length to test to what extent such a classifier can 

successfully distinguish between registers. 

 

 

8.1 Procedure 

 

We used the same materials as in Study 4, with the exception that, across all 

components, we only selected sentences containing 2 - 25 words. We excluded one-

word sentences because they are mostly backchannels, which occur predominantly in 

more spontaneous speech registers and may therefore have a strong influence on 

overall perplexity score differences between speech registers. We excluded sentences 

longer than 25 words to restrict the range in average sentence length over all 

components. 

  To show the extent of average sentence length variability across registers, we 

tabulated, in Table 5, the average sentence length for the different speech registers in 

the Spoken Dutch Corpus and the validation corpus (its components are capitalized in 

the table). The average sentence length differs quite extensively (range 6 – 28 words 

on average per sentence).  The range was reduced to 7 – 15 words on average per 

sentence in the subset restricted by sentence length. Table 5 also shows that similar 

registers can differ in sentence length in different corpora. For example, components 

“k” and “o” from the Spoken Dutch Corpus have a high average sentence length, 

while the validation corpus equivalents (i.e. books and teleprompt texts) do not. 

 
  



	

Table 5.  Number of words, sentences and the average sentence length across datasets  
 
All Sentences Sentences with 2 - 25 words 
 com-
ponent 

word 
tokens 

sentences average 
sentence 
length 

% of total 
word 

tokens 

% of total 
sentences 

average 
sentence 
length 

a 1,745,854 303,186 6 88 70 7 
b 249,844 23,835 11 67 68 10 
c 738,794 129,351 6 88 68 7 
d 509,960 83,514 6 87 70 8 
e 136,438 179,14 8 77 69 9 
f 538,795 52,274 10 68 73 10 
g 217,626 110,63 20 42 68 12 
h 278,749 34,496 8 83 78 9 
i 130,336 124,12 10 76 94 9 
j 90,614 7,620 12 73 82 11 
k 285,278 21,176 14 96 98 13 
l 80,081 6,210 13 72 85 11 
n 61,799 2,190 28 28 54 15 
o 551,441 47,944 12 79 90 10 
BOOKS 1,000,042 121,256 8 93 91 8 
TP* 1,000,044 107,080 9 95 95 9 
IFADV 70,170 12,203 6 92 74 7 
ECSD 157,106 19,197 8 71 72 8 
NOTE: *teleprompt texts  

 

We trained the speech register classifiers using the same procedure and sentence sets 

as described in Study 4. In addition, we created a speech register classifier based 

solely on sentence length. To create the latter classifier, we computed sentence length 

counts (counts of sentences with specific numbers of words) for each speech register 

in the Spoken Dutch Corpus. The histogram of sentence lengths per register 

represents a register-specific sentence length model analogous to the SLM used 

before. We created test sets for the sentence length model by computing sentence 

length counts for all sentence sets (of 2, 4, 8 … 1024 sentences) for both the Spoken 

Dutch Corpus and the validation corpus. We compared these test sets with the (speech 

register-specific) sentence length models using the Kullback-Leibler divergence 

(𝐷xy), presented in Equation 6. We used the 𝐷xy  as a similarity metric analogous to 

how we used perplexity scores.  

 



	

𝐷xy(𝑝||𝑞) = 	∑ 𝑝(𝑖)	𝑙𝑜𝑔3
{(3)
|(3)

       

In Equation 7 q denotes the observed distribution (test set) and p the modelled 

distribution. The 𝐷xy	is a measure of the asymmetric difference between q and p. In 

our case the observed distribution q is the sentence length counts for a given set of 

sentences and the modelled distribution p is the sentence length counts of a given 

register (i.e. a component in de the spoken Dutch corpus).  

We calculated the 𝐷xy  for each combination of a sentence set and speech 

register, similar to the approach used with the SLMs. We used the resulting 𝐷xy  

similarity vectors for each sentence set to train and test register classifiers based on 

the Spoken Dutch Corpus. We validated these classifiers with sentence sets from the 

validation corpus. Classifiers for the smaller sentence sets (sets of 2,4,…,16 

sentences) were not created, because of the prohibitively long computing time 

necessary for the calculation of all the 𝐷xy  values. 

To quantify performance difference between word predictability and sentence 

length based classifiers, we calculated the average cross-entropy (ACE) for both the 

sentence length and word predictability classifiers (both LDA based). The cross-

entropy reflects the difference between the probability the classifier assigns to each 

possible class (the fourteen different registers in this case) and the correct class. If a 

classifier assigns a high probability to the correct class, this results in a low cross-

entropy. The cross-entropy is calculated according to Equation 7, where p denotes the 

probability of the class for the current test set (i.e. the correct class equals one and all 

other classes equal zero) and q denotes the probability for each class according to the 

classifier. 

 

𝐻(𝑝, 𝑞) = −	∑ 𝑝(𝑥)	𝑙𝑜𝑔j 𝑞(𝑥)       

 

We computed the cross-entropy for all sentence sets for both the classifier based on 

word predictability and the one based on sentence length. Subsequently, we computed 

the ACE by averaging the cross-entropy across all sentence sets of specific cardinality 

for each classifier (based either on word predictability or sentence length) and 

compared the results.  

(6) 

(7) 



	

 

 

8.2 Results and discussion 

 

Figure 4 shows the results of the two different types of speech register classifiers, the 

one based on word predictability and the one based on sentence length. The results are 

provided for both the Spoken Dutch Corpus and for the validation corpus.  

 

Figure 4. Classification accuracy of speech registers based on word predictability 

and sentence length, as a function of sentence set cardinality 

 
 

 

The speech register classifiers based on word predictability reach ceiling performance 

(accuracy 100%) with sets of 512 sentences. The validation corpus reaches maximum 

performance (accuracy 98%) with sets of 1024 sentences. The results are comparable 

to the results obtained in Study 3, which were based on all sentences (see Figure 2). 

This is a first indication that average sentence length differences across registers do 

not underlie the accuracy of our classifiers assumed to be based on word 

predictability, because differences in average sentence length were reduced in the 

current experiment.  
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The classifiers based just on sentence length were able to classify speech 

registers in the Spoken Dutch Corpus with reasonable accuracy. The classification 

performance does not generalize to the validation corpus. Furthermore, the ACE 

results also show that the word predictability based classifiers outperform the 

sentence length classifiers (Table 6): The comparison between classifier types shows 

a clear advantage for the word predictability classifier. We conclude that sentence 

length differences between registers cannot explain the results found with the 

classifiers based on word predictability.  

 
Table 6. Performance comparison of the speech register classifiers  

Sentence set 
ACE scores for each register classifier 

Sentence length Word predictability 
32 1.74 0.43 
64 1.49 0.23 
128 1.23 0.08 
256 0.94 0.01 
512 0.68 0.0001 

1024 0.38 < 0.0001 
NOTE: ACE scores are based on the data from the Spoken Dutch Corpus. Lower scores indicate 
better performance. 
 

In conclusion, the results from Study 4 show that the performance of the speech 

register classifier based on word predictability cannot be attributed to sentence length 

differences between the components in the Spoken Dutch Corpus. When we restrict 

the corpus to sentences of 2-25 words (to attenuate differences in sentence length 

between speech registers), the accuracy results are very similar to the results based on 

all sentences. Additionally, when we trained a classifier based on sentence length, the 

classifier performance did not generalize to the validation corpus and this classifier 

was also clearly outperformed by a classifier based on word predictability, as shown 

by the ACE comparison. 

 

 

9. General Discussion and Conclusion 
 

We conducted five studies to investigate differences in word predictability between 

speech registers in Dutch. We used statistical language modelling (SLM) to quantify 

register-specific word predictability and trained a LDA classifier on the SLM output. 



	

In fives studies we determined the best approach to create the SLMs, whether the 

classifier can distinguish speech registers and the robustness of the results. 

 The aim of Study 1 was to test the best approach to create a balanced SLM 

vocabulary for training register-specific SLMs. We found that there were substantial 

differences in word token frequency for some word types between speech registers. 

We used averaged reduced frequency (ARF) to filter out bursty words (i.e. words that 

only occur in concentrated bursts in the corpus). This approach was able to attenuate 

speech register vocabulary differences related to topic specificity. Future studies that 

investigate differences in register or genre thus best use a word selection criterion that 

penalizes topic-specific words. For the current study, we treated word burstiness and 

the topic-specificity of words as equivalent. Future research may investigate their 

relationship and the possibility to create a measure that more specifically targets 

topic-specificity, which may result in an improved inclusion criterion for a robust 

vocabulary.  

The aim of Study 2 was to create a speech register classifier based on word 

predictability. We used register-specific SLMs in combination with LDA to create the 

classifier and found that it was able to distinguish perfectly between 14 (register-

specific) components of the Spoken Dutch Corpus. This result shows that the 

classifier can distinguish between texts grouped into components. We conducted 

Study 3 to test whether the classifier is indeed sensitive to register differences 

between the components. We performed the procedures from Study 2 on 1000 

pseudo-random variants of the components. The resulting classifiers performed poorly 

and could not distinguish the randomized components. This result shows that a 

classifier trained on perplexity scores cannot distinguish between random 

(heterogeneous) sets of sentences and that the perfect accuracy results obtained in 

Study 2 are based on systematic word predictability differences between speech 

registers. 

Furthermore, we created a validation corpus, with materials from other 

corpora. The validation of our register classifier is important in light of the finding by 

Miller & Biber (2015), who showed that the number of word types keeps growing 

with the addition of new texts to a corpus, even if they are from a restricted domain 

(i.e. psychology textbook). It is therefore important to test whether results hold across 

corpora. We tested the speech register classifier (trained on material from the Spoken 

Dutch Corpus) on the validation corpus and found that it can also accurately classify 



	

registers in this corpus. This shows that our speech register classifier is not overfitted 

to idiosyncratic aspects of the Spoken Dutch Corpus. The combined results support 

our hypothesis that word predictability differs across speech registers. 

The aim of Study 4 was to investigate the amount of text materials needed to 

classify the register of a text based on word predictability. We found that sets of 128 

sentences are sufficient to train a classifier with a classification accuracy of 92% on 

the Spoken Dutch Corpus (with similar performance on the validation corpus). We 

conclude that register differences can be identified with a small amount 

(approximately 1000 words) of materials. 

Figure 3 shows speech register differences captured by our classifier by means 

of a scatterplot based on the first two linear discriminants of the LDA. The plot 

illustrates that, compared to other registers, the spontaneous registers cluster together 

closely. This is corroborated by the confusion matrices of the classifiers; most 

classification errors are made between the spontaneous conversations a and the two 

telephone dialogue components “c” and “d”. All other registers are well separated. 

The clustering of spontaneous speech registers corresponds well with previous 

literature. Multiple factors contribute to the similarity of spontaneous speech registers 

(e.g., Leech, 2000: 697-701; Ellis, 2002: 156). For example, shared context between 

interlocutors reduces the need for specificity. Another contributing factor is the 

available processing time. Speakers only have limited time for processing and no 

possibility of editing, which typically results in a limited and reused repertoire. (i.e. 

the use of formulaic language to achieve a certain speech act; e.g., Schmitt, 2010: 8-

12). These factors work together to produce spontaneous speech registers that are 

similar, as is attested by the result from our study. 

Previous research reported a distinction between informational and involved 

dimension in language use (Biber, 1988, 1995) with factor analysis. Our cluster of 

spontaneous registers could be interpreted as registers that use involved language; 

however, the other registers do not cluster together in an informational counterpart. 

This could be because instead of using comparatively small sets of lexico-

grammatical features, we used large sets of n-grams width statistical language 

modelling. It is possible that a large feature set such as n-grams is sensitive to 

differences between registers that use informational language, which would explain 

why we did not find a cluster of informational registers. Our results suggest that 

register differences are not exclusively related to lexico-grammatical features, because 



	

word n-grams reveal subtle but robust differences across registers. We propose that 

register analysis based on lexico-grammatical features, could be fruitfully 

complemented by this new approach. 

Speech registers differ in the average length of sentences (see Table 5). In 

Study 5 we tested whether sentence length influences the performance of the speech 

register classifier. We used a subset of the corpus with reduced differences in average 

sentence length between registers. We found results similar to those in Study 4, which 

suggests that sentence length differences cannot account for the performance of the 

speech register classifier. Furthermore, we trained a register classifier based solely on 

sentence length, which could distinguish between speech registers to some extent, 

similar to Wiggers & Rothkrantz (2007) findings. However, the classifier based on 

sentence length was clearly outperformed by the classifier based on word 

predictability. Additionally, the performance of the classifier based on sentence length 

did not generalize to the validation corpus, indicating that sentence length is not a 

robust basis for a register classifier. The results showed that the classifier performance 

is best explained by word predictability differences and cannot be explained by 

sentence length differences between registers. 

Our results have implications for studies investigating word predictability in 

relation to language comprehension. Given the sensitivity of readers and listeners to 

the predictability of words (e.g. Smith & Levy, 2013), it is plausible that they are also 

sensitive to register-specific differences in word predictability. In addition, Study 4 

showed that the differences in word predictability between registers are already 

substantial in only 128 sentences (i.e. approximately 5 minutes of speech materials). It 

is therefore plausible that human listeners can notice these substantial differences as 

well. Future research has to show whether readers and listeners adapt their 

expectations based on the wider context of situation of use when comprehending 

written or spoken language. 

Our results also raise important questions about the nature of lexical 

representations. For example, what type of lexical representation allows speakers to 

systematically adapt their word use to the appropriate register? Are different word 

predictabilities stored for every speech register and if so, how many registers are 

lexically represented? If listeners use register-specific word predictability to tune their 

anticipations of upcoming words, the question is again how these register-specific 

word predictabilities are mentally represented.  



	

The study shows that the combination of register analysis and text 

classification with the aid of statistical language modelling provides important new 

insights about registers and the requirements needed for speech processing and the 

mental lexicon. Importantly, the study extends the finding that situation of use 

determines language variation, by reporting differences across speech registers in 

word predictability. 

 

 

Notes  
 

1. SRILM release 1.5.12, http://www.speech.sri.com/project 

 

2. A count-of-count list lists the number of n-grams occurring a specific number of times (i.e. 

there are 15 unigrams that occur 3 times) in the training data.    
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Appendix 1. Precision, recall and f1 scores for the speech register classifier in 

Study 2 
 

Component precision recall f1 
Spontaneous dialogues 1.00 1.00 1.00 
Interviews with teachers of Dutch 1.00 1.00 1.00 
Spontaneous telephone dialogues via platform 1.00 1.00 1.00 
Spontaneous telephone dialogues via a minidisc recorder 1.00 1.00 1.00 
Business negotiations 1.00 1.00 1.00 
Radio and television interviews and discussions 1.00 1.00 1.00 
Debates, discussion and meetings (especially political) 1.00 1.00 1.00 
Classes 1.00 1.00 1.00 
Spontaneous radio and television commentaries (e.g. 
sports) 1.00 1.00 1.00 

Radio and television newsroom and documentaries 1.00 1.00 1.00 
News broadcast on radio and television 1.00 1.00 1.00 
Reflections and commentaries broadcast  1.00 1.00 1.00 
Lectures and speeches 1.00 1.00 1.00 
Read-aloud stories 1.00 1.00 1.00 
 



	

 
Appendix 2. Precision, recall and f1 scores for the speech register classifier tested 
on the validation materials in Study 3 
 
Component precision recall f1 
Spontaneous dialogues 1.00 0.85 0.92 
News broadcast on radio and television 1.00 1.00 1.00 
Read-aloud stories 1.00 1.00 1.00 
 

Appendix 3. Precision, recall and f1 scores for the speech register classifier tested 
on the validation corpus materials in Study 4 
  
Component precision recall f1 
Spontaneous dialogues 1.00 0.61 0.76 
News broadcast on radio and television 1.00 1.00 1.00 
Read-aloud stories 1.00 1.00 1.00 
NOTE: The scores are provided for the classifier trained and tested on 128-sentence sets. 

 

Appendix 4. Precision, recall and f1 scores for the speech register classifier in 
Study 4 tested on the Spoken Dutch corpus materials 
  
Component precision recall f1 
Spontaneous dialogues 0.98 0.96 0.97 
Interviews with teachers of Dutch 1.00 1.00 1.00 
Spontaneous telephone dialogues via platform 0.90 0.89 0.90 
Spontaneous telephone dialogues via a minidisc recorder 0.81 0.90 0.85 
Business negotiations 1.00 1.00 1.00 
Radio and television interviews and discussions 1.00 1.00 1.00 
Debates, discussion and meetings (especially political) 1.00 1.00 1.00 
Classes 1.00 0.99 1.00 
Spontaneous radio and television commentaries (e.g. 
sports) 1.00 1.00 1.00 

Radio and television newsroom and documentaries 0.97 1.00 0.98 
News broadcast on radio and television 1.00 1.00 1.00 
Reflections and commentaries broadcast  1.00 1.00 1.00 
Lectures and speeches 1.00 1.00 1.00 
Read-aloud stories 1.00 1.00 1.00 
NOTE: The scores are provided for the classifier trained and tested on 128-sentence sets. 

 

  



	

Appendix 5. Precision, recall and f1 scores for the speech register classifier 
(based on word predictability scores) tested on the validation corpus materials in 
Study 5 
 
 
Component precision recall f1 
Spontaneous dialogues 1.00 0.73 0.84 
News broadcast on radio and television 1.00 1.00 1.00 
Read-aloud stories 1.00 1.00 1.00 
NOTE: The scores are provided for the classifier trained and tested on 128-sentence sets. 

 

Appendix 6. Precision, recall and f1 scores for the speech register classifier 
(based on sentence length) tested on the validation corpus materials in Study 5 
 
Component precision recall f1 
Spontaneous dialogues 0.75 0.19 0.30 
News broadcast on radio and television 0.00 0.00 0.00 
Read-aloud stories 0.01 0.01 0.01 
NOTE: The scores are provided for the classifier trained and tested on 128-sentence sets. 

 

Appendix 7. Precision, recall and f1 scores for the speech register classifier 
(based on word predictability) tested on the validation corpus materials in Study 
5 
 
Component precision recall f1 
Spontaneous dialogues 0.99 0.98 0.99 
Interviews with teachers of Dutch 1.00 1.00 1.00 
Spontaneous telephone dialogues via platform 0.94 0.91 0.93 
Spontaneous telephone dialogues via a minidisc recorder 0.86 0.94 0.90 
Business negotiations 1.00 1.00 1.00 
Radio and television interviews and discussions 1.00 1.00 1.00 
Debates, discussion and meetings (especially political) 1.00 1.00 1.00 
Classes 1.00 1.00 1.00 
Spontaneous radio and television commentaries (e.g. 
sports) 1.00 1.00 1.00 

Radio and television newsroom and documentaries 1.00 1.00 1.00 
News broadcast on radio and television 1.00 1.00 1.00 
Reflections and commentaries broadcast  1.00 1.00 1.00 
Lectures and speeches 1.00 1.00 1.00 
Read-aloud stories 1.00 1.00 1.00 
NOTE: The scores are provided for the classifier trained and tested on 128-sentence sets. 

 



	

Appendix 8. Precision, recall and f1 scores for the speech register classifier 
(based on sentence length) tested on the validation corpus materials in Study 5 
 
Component precision recall f1 
Spontaneous dialogues 0.77 0.56 0.65 
Interviews with teachers of Dutch 0.36 0.38 0.37 
Spontaneous telephone dialogues via platform 0.40 0.47 0.44 
Spontaneous telephone dialogues via a minidisc recorder 0.23 0.29 0.26 
Business negotiations 0.24 0.48 0.32 
Radio and television interviews and discussions 0.55 0.47 0.51 
Debates, discussion and meetings (especially political) 0.84 0.87 0.85 
Classes 0.36 0.36 0.36 
Spontaneous radio and television commentaries (e.g. 
sports) 0.18 0.51 0.27 

Radio and television newsroom and documentaries 0.12 0.53 0.20 
News broadcast on radio and television 1.00 0.99 0.99 
Reflections and commentaries broadcast  0.15 0.30 0.20 
Lectures and speeches 0.67 0.67 0.67 
Read-aloud stories 0.66 0.37 0.48 
NOTE: The scores are provided for the classifier trained and tested on 128-sentence sets 


