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Abstract 

The Dutch EEG Speech Register Corpus contains 207 hours of EEG recordings from 48 

participants listening to natural connected speech. The speech recordings were sampled from 

spontaneous dialogues, news broadcasts and read-aloud stories, and contain 50,277 word 

tokens per participant, time-locked to the EEG recordings. We cleaned the data with a novel 

approach by training a convolutional neural network artefact classifier on EEG recordings 

with manually labeled artefacts. We applied the artefact classifier on all EEG recordings and 

manually checked all automatically identified artefacts to ensure high data quality. Eye-

related activity was removed with independent component analysis. The EEG recordings 

(raw and cleaned), contain 1.5 million word epochs, are freely available (license: CC BY NC 

4.0) and offer research opportunities to investigate neural correlates of natural connected 

speech processing. 

 

Keywords: speech perception, speech registers, electroencephalography, corpus, statistical 

language models 
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1. Introduction 

 

This article presents a new corpus of EEG recordings, the Dutch EEG Speech Register 

Corpus (henceforth DESRC).  For the DESRC, we recorded EEG data from 48 participants 

who listened to long (4 – 15 minutes) continuous stretches of natural speech and we time-

locked the EEG data to all words in the speech materials. In this manner, we collected 207 

hours of EEG recordings, containing 1.5 million word epochs. The large amount of freely 

available, and carefully cleaned EEG data in the DESRC corpus hopefully provides many 

new opportunities to investigate the neurophysiological correlates of speech perception of 

natural connected speech.  

The setup for the EEG recordings for the DESRC differs from classic EEG 

experiments. We used long continuous stretches of natural speech, which is similar to, for 

example, the approach taken in Willems et al. (2016), who conducted an fMRI study with 

participants listening to excerpts from audio books. We will refer to this approach as the 

naturalistic sample approach. The naturalistic sample approach is based on three ideas. The 

first idea is to use naturalistic linguistic stimuli to improve the ecological validity of 

experimental results (see also Willems, 2015).  

The second idea is to dramatically increase the number of stimuli by considering all 

words in the language materials, rather than a subset of target words. This affords a relaxation 

of stimuli control, tackling an important drawback of EEG, namely, the sensitivity to the 

precise surface form (e.g. a specific recording of a spoken word) of the experimental 

materials (for more challenges, see Luck, 2014). The effects of stimuli surface forms will 

average out over the large number of stimuli, i.e. hundreds of thousands of stimuli, versus 

tens to hundreds in classical experiments. The use of large numbers of stimuli is aided by 

statistical analysis techniques such as linear mixed effects modelling (Bates et al., 2015).  
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The third idea concerns the type of predictors. With a big dataset, categorical 

predictors can be replaced with continuous predictors, thereby foregoing the need of 

artificially binning linguistic materials. For example, Frank et al. (2015) recorded EEG 

during a forced-paced reading task with sentences sampled from novels. They used a 

continuous predictor of word surprisal to predict the amplitude of the N400, while in classical 

N400 experiments words are typically grouped categorically into congruent and incongruent 

sets. The use of continuous predictors fits well with the graded effects observed with, for 

instance, the N400 (e.g. Federmeier & Kutas, 1999). 

With the use of longer stretches of natural speech it becomes feasible to consider the 

register of the language materials as a factor influencing processing. Register refers to the 

influence of the communicative situation on language use (see Biber and Conrad, 2009 for an 

overview). For example, people chatting socially use a different vocabulary compared to a 

person giving a formal address; formal occasions encourage more careful pronunciation than 

informal occasions (Ernestus et al., 2015) and the use of more formal words. Bentum et al. 

(2019a) found that word surprisal, as estimated by a statistical language model, depends both 

on the preceding words and speech register. The differences between speech registers could 

influence a listener’s speech processing. To capture the effect of speech register variation, we 

sampled speech materials from different registers and used the surprisal findings reported by 

Bentum et al. (2019a) to select three distinct speech registers (for further details see Bentum 

et al., 2022). 

The naturalistic sample approach requires a large amount of data to be collected. For 

EEG recordings, this results in a non-trivial amount of work concerning the preprocessing of 

the data. Several neuroimaging packages, such as EEGLAB (Delorme et al., 2004), MNE 

(Gramfort et al., 2014) and FIELDTRIP (Oostenveld et al., 2011), provide statistical means 

to aid artefact detection. Statistical artefact rejection is also described in Nolan et al. (2010). 
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These methods use various measures to describe the data (e.g. amplitude, amplitude range, 

variance, correlation between channels), which are typically transformed to z-scores. The 

measures are thresholded at a conservative value (e.g. |z| > 3) to find data that contain 

artefacts.  

Unfortunately, the use of statistics on simple measures (e.g. amplitude range) for 

artefact removal has serious limitations. The z-score is typically calculated separately for 

each participant, which results in a different rejection criterion per participant, because any z-

score thresholding rejects outliers, but is not informative about the quality of the rejected 

data. For example, when a participant’s dataset is noisy, z-score thresholding will only 

remove extremely noisy subsets and keep potentially corrupted data, while when the 

participant’s dataset is clean, it will remove potentially usable data. 

Instead of using threshold statistics to detect artefacts, we trained a convolutional 

neural network (CNN) to distinguish between clean and artefact EEG data. The classifier was 

trained to discover features that distinguish between clean and artefact data without relying 

on statistics of simple measures (e.g. amplitude, channel correlation), which only imperfectly 

capture that distinction.  

In the following sections, we detail the speech materials, the EEG recording and 

processing procedure, the training and validation of the automatic artefact classifier, and 

discuss validity of the corpus. 

 

2. Corpus 

The Dutch EEG Speech Register Corpus (DESRC) consists of 207 hours of EEG materials 

recorded from 48 participants listening to Dutch speech, sampled from three different 

registers: spontaneous dialogues, news broadcasts, and read-aloud stories. The EEG 

recordings for a participant was split into three sessions; during a single session a participant 
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listened to 90 minutes of speech materials form a specific register (e.g. spontaneous 

dialogues). The orthographically transcribed speech material is time-locked to the EEG 

recordings and we further enriched the data set with various types of information about the 

words in the natural speech stretches: part-of-speech tags, word frequency and several 

information theoretic measures such as word surprisal, entropy and cross entropy (for details 

see Bentum et al., 2022 and Bentum et al., 2019b, respectively).  

 

2.1 Speech materials 

The speech materials were sampled from different corpora; the news broadcasts and read-

aloud stories were taken from the Spoken Dutch Corpus (Oostdijk, 2002). The spontaneous 

dialogues were taken from the IFADV corpus (Van Son et al., 2008). Both corpora provide 

manual orthographic and automatically obtained phonemic annotations and segmentations, 

which allowed us to align the speech and EEG recordings.  

Table 1 lists descriptive statistics for the speech materials used for the EEG recording 

sessions. The spontaneous dialogue materials consist of six 15-minute dialogues between 

well acquainted dyads (e.g. friends, colleagues), recorded in 2006. They freely talked about 

any topic that came to mind. One of the 11 speakers is present in two dialogues. The read-

aloud stories materials consist of seven 12-minute-long excerpts from read-aloud Dutch audio 

books published between 1991 and 1999. The news broadcast materials consist of radio news 

broadcasts from the late nineties and early 2000s, which were grouped into seven blocks of 

12-minutes. 
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Table 1. Overview of the materials per speech register: the number of word tokens and types 

per register (word type is defined as the orthographic surface form), the average word 

duration in milliseconds, the number of speakers and the speakers’ age range. 

speech register 

word tokens 

(word types) 

average word 

duration 

speakers 

(male) 

speaker 

age range 

spontaneous dialogues 21,718 (2,435) 206 ms 11 (2) 20 — 62 

news broadcasts 15,350 (3,526) 289 ms  8 (7) 23 — 46 

read-aloud stories 13,209 (2,349) 256 ms 7 (3) 38 — 75 

total 50,277 (5,866) 245 ms 26 (13) 20 — 75 

 

2.2 EEG Participants 

Forty-eight neurologically unimpaired right-handed native speakers of Dutch (18 - 29 years), 

34 women and 14 men, participated in all three sessions of EEG recordings. All participants 

gave informed consent to participation and the public release of the recorded EEG signal. 

Participants were paid 80 euros for their participation. 

 

2.3 EEG Procedure 

The participants came to the lab on three separate occasions, separated by at least one week. 

They were fitted with the correct size electrode cap and seated in a sound-attenuating booth. 

The audio materials were presented via in-earphones (Etymōtic ER1) at a comfortable 

listening volume; a short audio sample (not used during the experiment) was used to set the 

volume. Participants listened to 90 minutes of speech from one register (see Table 1). The 

order of the registers was counter-balanced across participants. Participants were requested to 

sit still and keep eye-movement and blinks to a minimum.  

The audio materials were presented in blocks of approximately 15 minutes and the 

order of blocks was counter-balanced across participants. At the end of each block a 

participant could take a break.  

To encourage attentive listening, we visually presented yes-no comprehension 

questions. For both the dialogues and books sessions, comprehension questions were 

presented at the end of a 15- and 12-minute block, respectively, while for the news session, 
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questions were presented at the end of 4-minute sections within each block. In total we 

presented 36 questions for dialogues, 42 questions for books and 84 questions for the news 

materials. The news materials were split up in shorter segments to ease cognitive load, 

because the news materials contain many different topics. Participants responded with a 

button box.  

 

2.4 EEG recording 

The electroencephalogram (EEG) was recorded from 26 silver-chloride cap-mounted 

electrodes. The electrodes were placed according to the Standard International 10 - 20 

System (Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, P3, Pz, P4, P7, 

P8, CP1, CP2, CP5, CP6, O1, O2). Four additional electrodes were used to monitor eye-

related artifacts (eye-movements and blinks), placed at the outer left and right canthi, and 

below and above the left eye, converted off-line to horizontal and vertical electro-oculogram 

(EOG). Two additional electrodes were placed on the left and right mastoid. All electrodes 

were referenced to the left mastoid electrode and all electrode impedances were below 15 kΩ 

before recording started. The EEG signal was amplified with the Brain products actiCHamp 

system and band-pass filtered with 0.01 and 100 Hz cut-off frequencies, digitized at a 1000 

Hz sample frequency.  

 

2.5 EEG Preprocessing 

The data were re-referenced off-line to the mean of the left and right mastoids and filtered 

with a 5th-order Butterworth bandpass filter with cut-off frequencies at 0.05 and 30 Hz. We 

removed artefacts from the data semi-automatically by training and applying a deep neural 

network artefact classifier (see Section 3).  
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Subsequently, we used independent component analysis (ICA) to filter out activity 

related to eye-movement and blinks. Following Winkler et al. (2015), we computed the ICA 

on 1-30 Hz bandpass filtered data (after removing the artefacts). We visually determined 

EOG related ICA components based on the topography and the correlation with the EOG 

channels. We recomposed the 0.05-30 Hz bandpass filtered data without these components.  

The original recordings, the artefact annotations and the ICA-decompositions are all 

available in the online DESRC dataset. See Table 2 for an overview of the EEG materials. 

 

Table 2. Overview of EEG materials, (before) and after artefact removal. Word epochs are 

defined as EEG materials from 300 milliseconds before to 1000 milliseconds after word onset 

speech registers    hours  word epochs content word epochs 

spontaneous dialogues   51   (70)   701,335 (1,020,305) 368,407    (537,470) 

read-aloud stories   47   (66)    438,086   (631,970) 229,807    (332,322) 

news broadcasts   44   (71)    371,603   (731,649) 204,269    (401,130) 

total 142 (207) 1,511,024 (2,383,924) 802,483 (1,270,922) 

 

 

3. Automatic EEG artefact detection with a convolutional neural network 

In the following subsections, we describe how we annotated part of the EEG materials, and 

based on these annotated materials, trained and tested a CNN for artefact detection.  

 

3.1 Manual artefact annotation 

We manually annotated approximately 60 hours of EEG data, marking artefacts by their start 

and end boundaries. We divided the artefacts in two types: stretch and channel artefacts. 

Stretch artefacts are visible on all or most EEG channels during a stretch of time. The 

artefacts can be due to muscle activity, a sweaty scalp, etcetera. Channel artefacts occur on 

individual channels, due to poor connection with the scalp, technical problems (e.g. faulty 

electrode), etcetera. The solutions for these two artefact types differ. If all or most channels 

show artefacts (i.e. stretch artefacts), it is best to remove a complete section of EEG data (i.e. 
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all channels). If a specific channel shows artefacts over an extended period of time (i.e. 

channel artefacts), that single channel should be removed from that part of the data.  

 

3.2 Training, test and validation materials 

The EEG data was first downsampled from 1000 to 100 Hz for training and classification 

purposes.  Based on the manually annotated data, we created separate datasets for the stretch 

and channel artefacts and performed the following steps for each. We windowed the EEG 

data into 1-second windows (i.e. 100 samples per window) with 99% overlap (i.e. at every 

sample a window was started). We labelled each window as artefact when half or more of the 

samples overlapped with the manually annotated artefacts. All other windows were labelled 

clean. After this labeling procedure, we assigned each window randomly to one of a 100 sets. 

Ninety sets were used for training and ten sets were held out for validation and testing. 

For the stretch dataset we selected 25 channels, excluding the Fp2 channel due to 

overall poor signal quality. Each window thus consisted of a matrix of 25 channels by 100 

samples and had a label: clean or artefact.  

For the channel dataset we again excluded the Fp2 channel. For this dataset we 

created a separate window for each channel, which had the label clean or artefact based on 

the given target channel. Every window consisted of a matrix of 32 channels by 100 samples. 

We created this matrix by copying the target channel to the rows 1, 7, 13, 19, 25, 31. All 

other rows were filled by the 25 channels in fixed order. In this manner, each channel had a 

fixed position in the matrix while the target channel also had a fixed position in the matrix 

(i.e. row 1, 7 , …). We duplicated the target channel on these rows to mark it as the target and 

to ensure that the second layer kernel (see Section 3.3) would always be exposed to the target 

channel.  
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Before normalizing the values in each window, we set a threshold of ± 100 V for the 

stretch artefacts, and ± 300 V for the channel artefacts (i.e.  all larger values were set to 

these threshold values). Subsequently, we normalized the EEG signal within each window to 

a value between 0 and 1. Finally, we multiplied the resulting windows with a Hamming 

window. 

  

3.3 Model specification 

We specified the CNN in Tensorflow (Abadi et al., 2016) and started with a standard CNN 

model architecture inspired by its use in image classification (e.g. Krizhevsky et al., 2017). 

The typical CNN architecture for image classification specifies multiple convolutional layers 

of n by n (e.g. n = 5) kernels. For EEG data this kernel specification appears to be 

suboptimal, arguably because the time and channel dimensions have a different impact and 

statistical behavior. We adapted the model following Schirrmeister et al. (2017), who 

reported good results with EEG data classification where the first two convolutional layers of 

their model specify the time and channel dimensions, respectively. We found that this time-

channel separation approach also strongly improved the performance of our classifier. 

We defined a separate stretch and channel classification model. The structure of these 

models is presented in Table 3. The first layer (1 by 25 kernel) is exposed to 25 samples (i.e. 

from 25 consecutive time points) from one EEG channel. The second layer, a 6 by 1 kernel is 

exposed to six EEG channels at each time point. Subsequently, the output is pooled and 

followed by a kernel of 5 by 5 for the stretch model and 6 by 6 for the channel model, 

followed by a second round of pooling, followed by a fully connected layer, which is mapped 

to an output class vector of length 2 (i.e. clean or artefact).  
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Table 3. Overview of convolutional neural network architecture for the section and channel 

models. (Values that are different for the channel model are between parentheses).  Conv. 

stands for convolutional layer, Relu for rectified linear unit. 

Layer Type 
In 

channels 

Out 

channels 
kernel size 

feature map 

(channel model) 
Stride Activation 

1 conv. 1 32 1 X 25 25 (32) X 100 X 32 1 ReLu 

2 conv. 32 64 6 X 1 25 (32) X 100 X 64 1 ReLu 

3 pool 64 64 2 X 2 13 (16) X 50 X 64 2  

4 conv. 64 128 5 (6) X 5 (6) 13 (16) X 50 X 128 1 ReLu 

5 pool 128 128 2 X 2 7 (8) X 25 X 128 2  

6 linear 128 1  2400  ReLu 

7 softmax    2   

 

 

3.4 Training, classification and manual correction 

 

We trained both models with stochastic gradient descent. Each training epoch, a model was 

exposed to 200 windows drawn randomly from a given training set. We sampled down in 

favor of the artefact windows to a 50/50 ratio (approximately 7% of windows contain 

artefacts in the original data), to ensure the classifiers have a high recall of artefacts. We 

repeated training cycles until the classifier performance plateaued on the validation set.  

 The resulting stretch and channel models were used to classify the complete set of 

EEG materials. Subsequently, we transformed the windows classified as artefacts to start and 

end boundaries in the EEG signal. If two sections of artefact annotations were separated by 

less than two seconds, we combined the two artefact annotations. All automatic artefact 

annotation boundaries were corrected based on manual inspection. During manual inspection, 

we did not consider sections labeled as clean by the automatic classifiers of 40 seconds or 

longer because long clean stretches are unlikely to contain artefacts (artefacts tend to cluster). 

Therefore, it is possible that some artefacts remained unidentified. 

After manual correction, we marked channels as ‘bad’ (i.e. to be removed from the 

data for subsequent processing) if the data from a channel contained artefacts for more than 

40% of an experimental block, otherwise channel artefacts were relabeled as stretch artefact 
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(i.e. labeling the stretch of EEG data as artefact). These manually corrected annotations were 

used to exclude EEG data contaminated with artefacts from the EEG dataset. 

 

3.5 Classifier validation 

 

We analyzed the quality of the CNN classifier by comparing the automatic artefact 

annotations with the manually corrected annotations and with a simple threshold approach. 

This latter approach functioned as baseline, which we detail below.  

We chose the word epoch as the validation unit. Word epochs were defined as EEG 

materials from 300 milliseconds before word onset to 1000 milliseconds after word onset. 

We extracted all word epochs from the EEG materials and labelled each as clean or artefact 

based on the different annotation sets. As ground truth, we used the manually corrected 

automatic annotations (see Section 3.4). We compared the labelling based on the automatic 

CNN annotations with a labelling based on thresholding, a procedure whereby word epochs 

were considered clean if the maximum value of the word epoch EEG materials was between 

± 75 μV (a standard value for thresholding EEG data). 

 We computed the precision, recall, and F1-scores for the threshold and automatic 

CNN labeling of word epochs. The automatic classification based on the CNN classifier 

outperformed the threshold approach (see Table 4) with an F1-score of 0.89 compared to 

0.73. As intended, we boosted the recall (0.87) of artefacts at the cost of a slight drop in 

precision (0.83). 

The validation results show that there is a clear trade-off between time spent cleaning 

the EEG materials versus the quality and amount of usable EEG materials. The threshold 

approach is very fast, because no prior labelling of EEG data is required. However, this 

comes at the cost of missing 28% of the usable data and 27% of the artefacts. The 
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uncorrected output of the CNN classifier performed better (missing only 10% and 13%, 

respectively), however, this came at the cost of approximately 300 hours of annotation work 

for labelling training data. Manually correcting the classifier output further improved the 

quality of the EEG materials; however, this took another 240 hours of work. 

 

Table 4. Overview of word epoch labelling performance for different classification strategies.  

 threshold CNN 

 precision recall f1-score Precision recall f1-score 

artefact 0.60 0.73 0.66 0.83 0.87 0.85 

clean 0.82 0.72 0.77 0.92 0.90 0.91 

average 0.74 0.72 0.73 0.89 0.89 0.89 

 

4 Corpus validation 

The DESRC is the first corpus with a large amount of EEG recordings time-locked to each 

word in the natural speech materials presented to the participants. The corpus is therefore 

ideally suited to investigate neural correlates of speech perception. The speech materials are 

manually transcribed at the orthographic level and automatically transcribed at the phonemic 

level, enabling more fine-grained studies into phoneme perception in natural speech. For each 

participant, there are approximately fifty thousand word epochs.  

In the following subsections we briefly discuss previous research that utilized the DESRC so 

far and that shows that the corpus is indeed suited for investigating a range of research 

questions. In addition, we discuss the potential of the corpus for future research. 

 

4.1 Initial findings 

The data in the DESRC was already used in two published studies. In Bentum et al., 2019b, 

we investigated the phonological mismatch negativity (PMN), an event-related potential 

(ERP) that indexes unexpected compared to expected speech sounds in word onsets (see for 

example, Connolly et al., 1990 & 1992; Brunellière & Soto-Faraco, 2013). An important 
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criticism of previous PMN studies concerns the artificialness of the experimental design used 

to elicit the PMN, comparing very likely to very unlikely words (Huettig, 2015).  

The EEG data in the DESRC were ideal to address the issue of artificial experimental 

stimuli, since it is based on participants listening to natural speech and the corpus contains a 

large amount of EEG data to study the PMN, which is only a small effect. We analyzed all 

words in the natural speech stimuli with a novel continuous measure (Bentum et al., 2019c) 

that quantifies the unexpectedness of the speech sounds in a word’s onset (the computed 

values are also part of the DESRC), based on the preceding words and an analysis of the 

speech sounds with an automatic speech recognition system; see Bentum et al. (2019c) for 

the details and validation.  

 . We were able to successfully predict the PMN amplitude for the word epochs in the 

EEG data of the corpus with this new measure (see Bentum et al., 2019b). This is the first 

study that indicates that the PMN is also present in EEG data recorded from participants 

listening to natural speech, and provides evidence that listeners continuously anticipate 

upcoming speech sounds.  

In a second study (Bentum et al., 2022), we investigated the influence of speech 

register on word expectations during listening. Previous research (Frank et al, 2015) had 

found that word surprisal, a measure that captures the unexpectedness of a word, can predict 

the N400 amplitude in a reading task. The N400 is a well-known ERP and can be 

characterized as a negative deflection of the ERP signal 400 ms after word onset, indexing 

the unexpectedness of a word given the preceding context (for an overview see Kutas & 

Federmeijer, 2011).  

In the Bentum et al. (2022) study, we used the EEG data collected in the DESRC to 

investigate whether listeners use the wider context of speech register to adjust their word 

anticipations. The EEG data in the DESRC were recorded from participants listening to long 
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stretches of natural speech materials sampled from different speech registers. We modelled 

the N400 amplitude with different word surprisal values that reflect processing strategies that 

were either based on general language use or on specific speech registers. The word surprisal 

values for the different conditions are also part of DESRC. The results indicate that listeners 

use the wider context of speech register to adjust their word anticipations. This study 

indicates again that the DESCR contains valid data and can be used to answer research 

questions that cannot easily be addressed on the basis of other data sets. 

 

4.2 Future research 

The audio materials for the dialogue speech materials from the IFADV corpus are freely 

available and the audio materials for the news and read aloud books are freely available for 

researchers as part of the Spoken Dutch Corpus. The DESRC contains information on the 

location of the appropriate audio files. This implies that the corpus can be used by researchers 

from different fields to answer a range of research questions.  

 

The large amount of data for each of the participants enables a study of individual 

differences in speech perception. 

Further, new developments within automatic speech recognition, such Wav2vec 2.0 

(Baevski et al., 2020) and Whisper (Radford et al., 2023) allow for new analysis of the 

speech materials; the latent representations of these advanced models could be fruitfully 

applied to further analyze the EEG data in the DESRC. 

 The DESRC contains manually validated EEG artefact annotations. In Section 3, we 

described our approach to train and apply an automatic EEG artefact classifier. The set of 

artefact annotation could be used to further develop artefact or other EEG classifiers.  
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5 Conclusion 

 

The Dutch EEG speech register corpus (DESRC) contains EEG recordings from participants 

listening to long (4 – 15 minutes) stretches of natural speech. The DESRC is available under 

license CC BY NC 4.0 and contains a rich set of meta-data with orthographic and phonemic 

transcriptions time-locked to the EEG data. We enriched the transcriptions with part-of-

speech tags, word frequency and information theoretic measures such as word surprisal, 

entropy and cross entropy.  

Furthermore, we annotated the EEG data with a novel automatic CNN artefact 

classifier. All automatically identified artefacts were manually checked. The artefact 

annotations allow easy exclusion of data contaminated with artefacts. The DESRC was 

already used to show that the mismatch between anticipated and actual word forms predicts 

the N200 amplitude (Bentum et al., 2019b) and to show that listeners anticipate words based 

on preceding words and speech register when listening to natural speech (Bentum et al., 

2022). We hope that the dataset will be used to investigate many other (linguistic) 

phenomena.  
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